
Programming in Python Unit 5
Name:

Date:

 LuCE Lugano Computing Education

Research Lab

 Colors
Photo by Lucas George Wendt on Unsplash

Pick your favorite color from this selection of colored pencils.

Describe your favorite color in a way that your classmate can figure out your
choice.

Have they been able to guess your favorite color, with the correct shade?

In programming we have to be accurate without any ambiguity.

https://unsplash.com/@lucasgwendt?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/color-palette?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Programming in Python Unit 5

Page 2 of 13

Creating Colors by Adding Lights
Imagine you have three colored flashlights: red, green, and blue.

Which color do you get by overlaying the lights in the following way?
Complete the table:

Red Green Blue Mix
off off off black
off off on blue
off on off
off on on
on
on

With three flashlights, each of which can be turned off or on, you can get exactly 8
different colors. The table above has 8 rows, one for each possible color.

Why can one get 8 different colors?
Each light has two states, on or off. In total, we have three lights.

2 · 2 · 2 = 23 = 8

If now each flashlight instead of having only two states (on and off) is dimmable
(has an adjustable brightness), obviously the situation changes.
Let's say our flashlight has 256 different brightness levels, where 0 means off and
255 means on with the brightest light.
How many different colors can we get with 3 flashlights of this type?

256 · 256 · 256 = 2563 = 16'777'216

That's more than 16 million different colors! Your computer screen is capable of
creating all these 16'777'216 combinations.
If you buy a box of colored pencils you end up with maybe 12 different colors... ob-
viously-you could produce other shades with them... but what a lot of work...

Programming in Python Unit 5

Page 3 of 13

The RGB Color Cube
We can define a color by combining the various shades of the 3 colors red, green
and blue. This color specification consists of three numbers, here is an example:

76, 172, 35

How can these three numbers describe a color?
We can imagine a color as a point in a three-dimensional Cartesian reference sys-
tem, with the x-axis (R = red), y-axis (G= green) and z-axis (B= blue):
A possible command could be:
• go 76 steps in the R direction (red, x axis)
• go 35 steps in the G direction (green, y axis)
• go 172 steps in the B direction (blue, z axis)

The space of the set of possible colors represents a cube, where each dimension
ranges from 0 to 255.

Complete the following table and identify the colors of the vertices of the cube:

Red Green Blue Mix
0 0 0 Black
255 255 255 White
255 0 0
255 128 0 Orange
255 255 0
0 255 0
 Cyan
 Blue
 0 255 Purple
255 0 255
255 128 255 Pink

Programming in Python Unit 5

Page 4 of 13

RGB Colors in Office Programs
In the various office applications (Word, Excel, PowerPoint) you can select prede-
fined colors or define your personalized colors:

Predefined Colors Definition of Your RGB Color

Open an office application and choose three different colors to your liking.
Use the RGB slider to set the three values (red, green, blue).
Write them in the table:

Red Green Blue Name

 Favorite Color #1:

 Favorite Color #2:

 Favorite Color #3:

Programming in Python Unit 5

Page 5 of 13

RGB Colors with PyTamaro
To create a color using red, green, and blue as components, PyTamaro provides a
function named rgb_color with three parameters:

The following programs are equivalent:

Calling a Function: Using a Constant:

rgb_color(0, 255, 255) cyan

Complete the following table:

Calling a Function: Using a Constant:

rgb_color(, ,) magenta

 rgb_color

rgb_color
rgb_farbe
colore_rgb

B

G

R0

0

0

255

255

255

red
rot

rosso

cyan
cyan
ciano

green
gruen
verde

magenta
magenta
magenta

blue
blau
blu

yellow
gelb
giallo

black
schwarz

nero

white
weiss
bianco

transparent
transparent
trasparente

hsv_color
hsv_farbe
colore_hsv

H

S

V0

0

1

1

Colors / Farben / ColoriAPI Doc

cyan
cyan
ciano

magenta
magenta
magenta

rgb_color
rgb_farbe
colore_rgb

0

255

255

rgb_color
rgb_farbe
colore_rgb

rgb_color
rgb_farbe
colore_rgb

255

255

0

Programming in Python Unit 5

Page 6 of 13

Naming Colors (Defining Constants)
Let’s program a pink flower:

There is no constant for the pink color, thus we have to
call the function rgb_color to create the pink color.

Let’s use the same approach for the light yellow color.

Here is the program that produces the flower.
Find the function call that produces the pink color:

Desired Graphic

100 mm

ellipse
ellipse
ellisse

above
ueber
sopra

beside
neben
accanto

overlay
ueberlagere
sovrapponi

rgb_color
rgb_farbe
colore_rgb

255

128

255

50

50

ellipse
ellipse
ellisse

rgb_color
rgb_farbe
colore_rgb

255

128

255

50

50

ellipse
ellipse
ellisse

rgb_color
rgb_farbe
colore_rgb

255

128

255

50

50

ellipse
ellipse
ellisse

rgb_color
rgb_farbe
colore_rgb

255

128

255

50

50

ellipse
ellipse
ellisse

rgb_color
rgb_farbe
colore_rgb

255

255

128

50

50

overlay
ueberlagere
sovrapponi

Programming in Python Unit 5

Page 7 of 13

It is quite tedious to rewrite the same color function several times, each time we
need it. In the flower example we wrote the pink function as many as 4 times!
Of course there is a more effective solution!
In programming we can define a name and use it later when we need it.

Let's define the names of our pink and light-yellow colors!
Complete the following table:

Definition of the name pink: Definition of the name light_yellow:

pink = rgb_color(255, 128, 255)

We defined a constant. In Python we need to write the name, followed by an
equals sign, followed by the expression that produces the value of our constant:

name = expression

pink = rgb_color(255, 128, 255)

def

pink

rgb_color
rgb_farbe
colore_rgb

255

128

255

Programming in Python Unit 5

Page 8 of 13

Once a name is defined, we can simply use that name (constant), instead of hav-
ing to write the entire expression (that could be very complex).

Here is our flower program, where we substituted the calls to rgb_color with the
name pink:

Use the constant pink in the “Utilizzo delle costanti” activity on the PyTamaro site.

What do you have to change in the program above to use the name light_yellow?

You learned to create constants. Are there other parts that could be simplified in
the flower program? Are there other pieces of code that show up multiple times
and could be replaced by giving them a name?

ellipse
ellipse
ellisse

above
ueber
sopra

beside
neben
accanto

overlay
ueberlagere
sovrapponi

50

50

ellipse
ellipse
ellisse

50

50

ellipse
ellipse
ellisse

50

50

ellipse
ellipse
ellisse

50

50

ellipse
ellipse
ellisse

rgb_color
rgb_farbe
colore_rgb

255

255

128

50

50

overlay
ueberlagere
sovrapponi

pink

pink

pink

pink

Programming in Python Unit 5

Page 9 of 13

Write the Python code to create the constants light_yellow, petal, and pistil.

light_yellow =

petal =

pistil =

Now program the flower again, using these new constants!

Library

Create the program with the cards:

Rewrite the code of the flower using all the new constants on the PyTamaro site in
the “Utilizzo delle costanti” activity.

above
ueber
sopra

beside
neben
accanto

overlay
ueberlagere
sovrapponi

Desired Graphic

100 mm

def

pink

rgb_color
rgb_farbe
colore_rgb

255

128

255

·

uM

·

def

pink

rgb_color
rgb_farbe
colore_rgb

255

128

255

·

uM

·

def

pink

rgb_color
rgb_farbe
colore_rgb

255

128

255

·

uM

·

Programming in Python Unit 5

Page 10 of 13

CMY Color Model – How Printers Create Colors
The RGB model works with the additive method: we start at the black corner
(origin in the Cartesian three-dimensional reference system) by adding the lights
produced by the three different flashlights.

We can also start in the color cube from the opposite corner: we start in the white
corner, subtracting lights (covering a white page with colors). This model is based
on subtraction and is used in the CMY color model found inside printers.

We start with white and go ahead with:

- cyan (C)
- magenta (M)
- yellow (Y)

And that’s how a printer works!

Photo by tookapic from Pixabay

The RGB and CMY models are two different ways to navigate the same cube!

Model Each step… Starting point Dimen-
sion

Dimen-
sion

Dimen-
sion

RGB add colors black
RGB: 0,0,0

red green blue

CMY subtract colors white
RGB: 255, 255, 255

cyan magenta yellow

Y

B

GR

CM

https://pixabay.com/users/tookapic-1386459/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=933098
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=933098

Programming in Python Unit 5

Page 11 of 13

Models Based on Hue
Besides the RGB and CMY models there are other ways to define colors. For exam-
ple, there are ways based on the hue.

The hue is specified as an angle, from 0 to 360 degrees.

Color Circle Relationship Between Color Circle and RGB Cube

Angle: hue
Radius: saturation
Slider: value

Slider 1: hue
Slider 2: saturation
Slider 3: value

Complete the table with the angles (in degrees)
for each corner of the RGB / CMY color cube:

Color Angle
R red 0°
G green
B blue
C cyan
M magenta
Y yellow

CM

Y

B

GR0°

Programming in Python Unit 5

Page 12 of 13

Hue-Saturation-Value (HSV) = Hue-Saturation-Brightness (HSB)
A model based on the hue is the hue-saturation-value (HSV) model, also known as
hue-saturation-brightness (HSB).

To better understand the 3 parameters Hue, Saturation, and Value you can use the
following explanation:

Hue (H)
the colors of the rainbow
(on the circumference of the circle, in degrees)

Saturation (S) and Value (V)
Table with S and V, for hue 0° / red:

Value

Sa
tu

ra
tio

n
1.

0
10

0%

0.
0

0%

0.0
0%

1.0
100%

Programming in Python Unit 5

Page 13 of 13

Specifying Colors With the HSV Model in PyTamaro
Library Examples

Call hsv_color to create the color

Check whether you guessed the colors in the “Il modello HSV” activity on the PyTa-
maro web site!

You can imagine the HSV color model as a cylinder:

rgb_color
rgb_farbe
colore_rgb

B

G

R0

0

0

255

255

255

red
rot

rosso

cyan
cyan
ciano

green
gruen
verde

magenta
magenta
magenta

blue
blau
blu

yellow
gelb
giallo

black
schwarz

nero

white
weiss
bianco

transparent
transparent
trasparente

hsv_color
hsv_farbe
colore_hsv

H

S

V0

0

1

1

Colors / Farben / ColoriAPI Doc

hsv_color
hsv_farbe
colore_hsv

hsv_color
hsv_farbe
colore_hsv

hsv_color
hsv_farbe
colore_hsv

