
Programming in Python Unit 10
Name:

Date:

LuCE Lugano Computing Education

Research Lab

Automatic Film Generation
Growth Patterns

In Unit 9 we learned how to create lists, by writing down all the values:

List Element
Type

Constant
Increment

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[True, False]
[6.0, 6.0, 5.0, 5.5, 4.5, 3.5, 4.0, 5.0]
[0, 90, 180, 270]
[0, 30, 60, 90, 120, 150, 180, 210, 240, 270]
[pacman(30), pacman(60), pacman(90), pac-
man(120)]

 No

[hsv_color(0, 1, 1), hsv_color(30, 1, 1)]
[rgb_color(0, 0, 0), rgb_color(64, 64, 64)] Color No

Some lists contain integers and some are sequences with constant increment.

Compact Description of a List

Describe the characteristics of the following list: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Describe the characteristics of the following list: [0, 90, 180, 270]

Describe the characteristic of the following list: [6.0, 6.0, 5.0, 5.5, 4.5, 3.5, 4.0, 5.0]
Is there a clear pattern? What is the main difficulty?

Programming in Python Unit 10

Page 2 of 9

Create a List of Integers Using a Range

Python has a function with which you can easily create lists of integers, even very
long ones.

Link each function call to the list it produces:

range(0, 10, 1) [0, 2, 4, 6, 8]
range(0, 10, 2) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
range(0, 360, 90) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
range(1, 11, 1) [1, 2, 3, 4, 5, 6, 7, 8, 9]
range(1, 10, 1) [0, 90, 180, 270]

Describe the meaning of the three parameters of the range function:

range(0, 360, 90)

Similarly in mathematics: in sixth grade we learned to describe a numerical set
with the following notation.

𝐴 = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} = {𝑥 ∈ 𝑁|0 < 𝑥 < 11}

𝐵 = {0; 90; 180; 270} = {𝑥 ∈ 𝑁|	𝑥	è	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑜	𝑑𝑖	90	𝑒	𝑥 < 360}

Call the range function to produce the following lists:

[2, 4, 6, 8, 10]

[0, 3, 6, 9]

[0, 30, 60, 90, 120, 150, 180, 210, 240, 270]

[1, 3, 5, 7, 9]

Programming in Python Unit 10

Page 3 of 9

Use the range Function to Create a Film!
Let's try to create a film of a clock with a rotating hand. Here are the first six
frames:

How many frames does it take to show a full rotation if the hand jumps forward
one second in each frame?

A movie is a list of graphics. Assume there exists a function, clock, that can pro-
duce a graphic of a clock with the hand positioned at the required second.

Complete the table:
clock(0) clock(15) clock(50)

With the clock function we can create an animation (film) in this way:

show_animation(
 [clock(0), clock(1), clock(2), clock(3), clock(4), ...]
)

With this method we have to do a lot of work and list so many calls to the clock
function. How boring...

With range we can easily create a list containing a list of numbers. Can we some-
how use it to easily create a list of graphics?

Of course! We are programming, we can do almost anything!

We can proceed in two steps:

1. Use range to create a list of integers
2. Turn the list of numbers into graphics,

calling clock for each element in the range

Programming in Python Unit 10

Page 4 of 9

Step 1: Create a list of numbers
Call range to produce the necessary list of integer numbers:

Step 2: Map from the list of numbers to the list of clock graphics

Now you have a list with the desired numbers: [0, 1, 2, 3, 4, 5, …, 58, 59].

Python has a fantastic feature that transforms a list of one type (for example, a
list of numbers) into another type of list (for example, a list of graphics). Each ele-
ment is transformed individually.
This transformation is also called map (not in the sense of a geographic map, but
a mathematical function).

How can we transform (“map”) an integer number into a clock?
For example, how can we transform the integer number 45 into a clock graphic
with the hand indicating 45 seconds? Write the code:

We simply call our clock function. This function takes an integer number as an ar-
gument and produces as its output value a graphic showing the clock!

Now we need to call the clock function for each item in our list.
Here's how it works:

We are using the map function that “maps,” that is, transforms, a list of elements
into another list. To call map we need two arguments.

The second argument of map (highlighted in yellow) is the list to be transformed.
The first argument, on the other hand, tells how to transform a single list element.
It is a small, unnamed function that we write directly there.
Instead of def <name>, we start with the lambda keyword.
We then have to choose the name for the parameter: e.g., seconds.
We put the colon : and then directly the body of the function (light blue), without
return. We need to specify how to transform a single element, using the parame-
ter (in green) as an argument to the clock function (light blue).

map(lambda seconds: clock(seconds), [0, 1, 2, 3, 4, 5])

list to transform how to transform the element name of one element

First argument of map Second argument of map

Programming in Python Unit 10

Page 5 of 9

Now combine map with lambda and the call of the range function to produce the
list of clock graphics from 0 to 59 seconds:

In the space where you specify the list to transform, you can use range.
Now use the list produced by map as an argument to call
show_animation, and you will see your animated clock!

Now try it on the PyTamaro web site (“Animazione Orologio” activity).

Small but important clarification: for reasons of execution speed, the range and
map functions return values that are “almost” lists, but not quite.
Whenever you really need a list (as with show_animation), use the list(...) func-
tion to get a real list. For example:

show_animation(list(map(..., ...)))

Animated Rolling Eyes

Let's try to animate the following short film with 6 frames:

Use map and range to create a list of angles and the function
framed_eyes(angle_rotation) that you programmed in Unit 9.

show_animation(
 list(map(
 lambda

This little film contains only 6 frames. Instead of creating a rolling eyes film of 6
frames, try 36 frames (how does the range call change?).

Programming in Python Unit 10

Page 6 of 9

show_animation(
 list(map(
 lambda

By changing only one topic of the range call it becomes super easy to create
smooth animated movies! Try it on the PyTamaro web site!

Animated Pacman!

You have already created a short Pac-Man animation. Now try creating one where
the mouth gradually opens and then closes. You need to create a list of the mouth
angles.

• For the first half, the angles of the mouth should gradually increase
(mouth opening).

• For the second half, the angles of the mouth should gradually decrease
(mouth closing).

With the addition symbol + you can concatenate lists. For example:

my_preferred_numbers = [1, 2, 3]
your_preferred_numbers = [9, 4, 2]
our_preferred_numbers = my_preferred_numbers + your_preferred_numbers

The elements of our_preferred_numbers are [1, 2, 3, 9, 4, 2].

How can we create a list with decreasing numbers without listing them all? Can
the range function do this?

Connect the range calls to the following lists. Warning: two of the calls produce
the same list!

range(5, 0, -1) [5, 4, 3, 2, 1]
range(1, 0, -1) [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
range(1, 0, -2) [10, 8, 6, 4, 2, 0]
range(10, -1, -1) [1]
range(10, -1, -2)

Programming in Python Unit 10

Page 7 of 9

Use range to produce the angles of a mouth that is closing: [120, 90, 60, 30]

Write a function that produces a list of integers representing the angles of Pac-
Man's mouth, such as [0, 30, 60, 90, 120, 90, 60, 30].
Remember that range produces an “almost list”: to get a proper list, use
list(...).

def mouth_angles_steps_of_30():

 return list(range(, ,)) + list(range(, ,))

Write a more general function that specifies how long a step is:

def mouth_angles(step):

 return list(range(, , step)) + list(range(, , -step))

Using your mouth_angle and pacman functions, developed in the previous booklets,
create an animation with a step size of 10 degrees.

show_animation(
 list(map(
 lambda

Now try this out on the PyTamaro web site.

Programming in Python Unit 10

Page 8 of 9

Colored Squares

Let's now try to create an animation that shows all the colors of the rainbow!
Do you remember the HSV color model?

Follow these steps:

1. Create a list of numbers from 0 to 359 inclusive, which will serve as angles
2. Map each number, which indicates hue, to the corresponding color. Use 1.0

for both saturation and value.
3. Map each color to a square graphic of that color

0

… … …

… … …

60

… … …

… … …

angles =

colors =

graphics =

show_animation(list(graphics))

Now try this out on the PyTamaro web site.

Programming in Python Unit 10

Page 9 of 9

Animated Spelling

Create an animated version of spelling your name!
Each frame will display a graphic containing a letter.

To create a graphic with text, PyTamaro offers the text function:

Call the function to produce a graphic showing “Hello!” in black, written in font
“Fira Sans” at size 32.

Every textual part should be enclosed in quotation marks.
Such textual values belong to a new type called str
(string, or sequence of characters,
which can be letters, numbers, spaces...).

Create a list where each element is a string containing only one letter of your
name.
Then, map this list of strings into a list of graphics. To keep the same size across
frames, create a frame on which to overlay the letters.
Finally, show it as an animation (possibly slowing it down a bit)!

letters =

graphics =

show_animation(list(graphics))

Now try this out on the PyTamaro web site.

“Hello!”

“”

str

“L”

