
 Composition in Java Lab 3

 Page 1 of 19 LuCE Lugano Computing Education

Research Lab

Photo by Marvin Meyer on Unsplash

Lab 3
Music • Pacman animation • Printing Sequences •

Odds • Counting • Pacman maze

 Composition in Java Lab 3

 Page 2 of 19 LuCE Lugano Computing Education

Research Lab

Copy Your Lab 2 Toolbelt
In Lab 2 you wrote quite a few methods for your Toolbelt class. The Toolbelt class
included in the Lab 3 starter repository is empty. Please copy the contents of your
Lab 2 Toolbelt class into the Lab 3 Toolbelt class, so that you can continue to use
the methods you develop (and add new ones you might need in the future).

 Composition in Java Lab 3

 Page 3 of 19 LuCE Lugano Computing Education

Research Lab

A. Music with JTamaro

Task A1
JTamaro provides you with a method to play a sequence of notes.

void playNotes(Sequence<Note> notes, Instrument instrument)

Names for the notes using the Scientific Pitch Notation are defined inside the
jtamaro.en.music.Notes class.

For example, the middle C is represented as C4. Sharp (♯) and flat (♭) are repre-
sented by putting a S or F respectively after the note name: for example, C♯ is rep-
resented as CS4.

Class: Music
Task:

Let’s familiarize ourselves with the JTamaro music API.
In this task we will simply play the C major scale (ascending and de-
scending) with an acoustic grand piano.

To do that, first implement a parameter-less method cMajorScale that
returns a sequence of notes from C4 to B4. The “alphabet” of notes
ranges from A to G, and then “wraps”. That means that the note fol-
lowing C4 should be a D4, and so on. After G4, A4 follows.

Then, define a parameter-less method cMajorAscendingDescending
that returns a sequence that contains the notes of the cMajorScale
sequence, C5 and the notes of the cMajorScale sequence in reverse
order.

The of, concat and reverse methods for Sequences are helpful to solve
this task.

Run in
JShell:

playNotes(Music.cMajorScale(), Instrument.ACOUSTIC_GRAND_PIANO)

Output: Listen to the first part of c-major.mp3 and compare
Run in
JShell:

playNotes(Music.cMajorAscendingDescending(), Instrument.ACOUSTIC_GRAND_PIANO)

Output: Listen to c-major.mp3 and compare

Task A2
The Swiss Railways (SBB-CFF-FSS) use three versions of the jingle for travel an-
nouncements. The three jingles are made with the notes of the three acronyms:

• E(s) – B – B for the German SBB (Schweizerische Bundesbahnen)
• C – F – F for the French CFF (Chemins de fer fédéraux suisses)
• F – E(s) – E(s) for the Italian FFS (Ferrovie federali svizzere)

 Composition in Java Lab 3

 Page 4 of 19 LuCE Lugano Computing Education

Research Lab

The jingle played depends on which canton (or country for international travels) the
station or train is located in. For example, if you were to take the EC35 train that
travels from Genève to Venezia, you would first hear the CFF jingle in Genève, then
the SBB jingle in Brig and once the train crosses the Italian border, you’d finally
hear the FFS one.

You can find more information on the topic by visiting these articles on the SBB
website.

We will use the Vibraphone as our instrument to match the original sound.

Class: Music
Task:

Implement the sbb method to return a sequence containing the fol-
lowing notes: E♭4, B♭4 and B♭4.

Implement the cff method to return a sequence containing the fol-
lowing notes: C5, F4 and F4.

Implement the ffs method to return a sequence containing the fol-
lowing notes: F4, F4 and E♭4.

Implement the allJingles method to return a sequence containing
the notes of the sbb, cff and ffs jingles in sequence.

Important: use the cons, empty, of and concat methods appropriately
to create the different sequences.

Run in
JShell:

playNotes(Music.sbb(), Instrument.VIBRAPHONE)

Output: Listen to sbb.mp3 and compare
Run in
JShell:

playNotes(Music.cff(), Instrument.VIBRAPHONE)

Output: Listen to cff.mp3 and compare
Run in
JShell:

playNotes(Music.ffs(), Instrument.VIBRAPHONE)

Output: Listen to ffs.mp3 and compare
Run in
JShell:

playNotes(Music.allJingles(), Instrument.VIBRAPHONE)

Output: Listen and compare to the previously linked mp3 files

B. Animated Pacman
So far, we have shown individual graphics by using the method show:

void show(Graphic graphic)

 Composition in Java Lab 3

 Page 5 of 19 LuCE Lugano Computing Education

Research Lab

JTamaro also provides the showFilmStrip method to show a sequence of graphics
as a film strip.

void showFilmStrip(Sequence<Graphic> frames, int width, int height)

The method has three parameters: a sequence of graphics (one graphic for each
frame of the film strip), the width of a frame, and the height of a frame. To get a
decent result, the graphics in the sequence should be no bigger than the frame.
Finally, JTamaro also provides the animate method that shows a sequence of
graphics as a looped animation.

void animate(Sequence<Graphic> frames)

Task B1
Class: PacmanSprite
Task:

Implement the pacman and the pacmans method.

You probably didn't move your old pacman method from lab-01 into
your toolbelt. If you did, you may now use it. If you did not copy it in
the past, either copy it into your toolbelt now, or write the method
again in the PacmanSprite.java file.
The pacmans method should return a sequence of graphics. Each
graphic should show a pacman with the given diameter and with a
different mouthAngle.
The sequence should contain 6 frames with pacman widening its
mouth from a mouthAngle of 10 to 40. Remember to include frames
for both the widening and narrowing of the mouth angle, otherwise
the animation will not look good.

Assert that the diameter and mouthAngle are acceptable.

Run in
JShell:

showFilmStrip(PacmanSprite.pacmans(100), 100, 100)

Output:

Run in
JShell:

animate(PacmanSprite.pacmans(100))

Output: Animation of pacman opening and closing its mouth
 Do you feel the pain of having to write the almost same code six

times to produce six pacmans?

 Composition in Java Lab 3

 Page 6 of 19 LuCE Lugano Computing Education

Research Lab

C. Printing Sequences
JTamaro has two methods that print the content of a sequence:

<T> void print(Sequence<T> sequence)

<T> void println(Sequence<T> sequence)

The former prints the elements on the same line, the latter prints each element on
a separate line.

These methods work well with sequences of integers, doubles, booleans, charac-
ters, and strings. While you can use them to print sequences of colors, or graphics,
or other things, the printed output will not actually show you the color or the
graphic, but just some text. If you want to look at a sequence of graphics, use
showFilmStrip or animate instead.

Task C1
Class: Ranges
Task:

Implement the degreeAngles method to return a sequence of angles:
from 0 degrees to 359 degrees with a given step value.

Important: Use the range method.

Run in
JShell:

println(Ranges.degreeAngles(1))

Output: 0
1
2
…
359

Run in
JShell:

println(Ranges.degreeAngles(3))

Output: 0
3
6
…
357

 Do you feel the joy of producing this sequence with such a short piece
of code?

 Composition in Java Lab 3

 Page 7 of 19 LuCE Lugano Computing Education

Research Lab

D. Odds1
We want to model the likelihood, or odds, of an event. For example, if we were to
roll a fair six-sided die, the probability of rolling a 6 would be “one out of six” (one
favorable case, five unfavorable cases, six cases in total).
Another way to represent this would be “five-to-one”, or “5/1” in short. This nota-
tion conveys the fact that there are 5 ways to not roll the desired number and 1 way
to roll it. Finally, another way would be to use a percentage to represent the event
likelihood (16.67% in this case, or 0.16666666…).

Task D1
Class: Odds (You need to create it)
Task:

Implement a record class in the file named Odds.java.

This record class must have two fields named will and wont, both of
type int, to keep track of the number of favorable cases in which the
event will happen and the number of unfavorable cases in the event
won’t happen, respectively.

Note: throughout this exercise, never attempt to “simplify” the fraction
representing the odds (i.e., it is perfectly fine to model an event that
has 3 favorable cases and 3 unfavorable ones; no need to reduce it to
1 and 1).

Run in
JShell:

new Odds(1, 5)

Output: ==> Odds[will=1, wont=5]

Task D2
Class: OddsUtils
Task:

In the file OddsUtils.java, define three parameter-less methods:
• rollingSix() that returns an instance of Odds representing the

probability (1 out of 6) to roll a six using a fair six-sided die
• tossingHeads() that returns an instance of Odds representing the

probability (1 out of 2) to toss heads using a fair coin
• drawingAce() that returns an instance of Odds representing the

probability (4 out of 52) to draw an ace from a deck of cards

Run in
JShell:

OddsUtils.rollingSix()

Output: ==> Odds[will=1, wont=5]
Run in
JShell:

OddsUtils.tossingHeads()

Output: ==> Odds[will=1, wont=1]
Run in
JShell:

OddsUtils.drawingAce()

Output: ==> Odds[will=4, wont=48]

1 This exercise is inspired by an assignment by Juha Sorva.

 Composition in Java Lab 3

 Page 8 of 19 LuCE Lugano Computing Education

Research Lab

Task D3
Class: OddsUtils
Task:

Implement a method named probability, which returns as a double the
probability of a given Odds instance.

The probability is computed as the ratio of favorable cases (will) over
the total number of cases (favorable and unfavorable).

To compute the total number of cases, define and then call an auxiliary
method named cases that returns as an int the appropriate value. This
method will come in handy later.

Hint: if you get 0 as a result, you might be preforming a division be-
tween two integer values (note that both will and wont are of type int).
There are many ways to make Java perform a division with floating
point numbers (e.g., double values). One simple way is to first multiply
the dividend by 1.0 (the .0 part of the literal is important as it is what
specifies that the literal is a double and not an int).

Run in
JShell:

OddsUtils.probability(OddsUtils.rollingSix())

Output: ==> 0.16666666666666666
Run in
JShell:

OddsUtils.probability(OddsUtils.tossingHeads())

Output: ==> 0.5
Task: Implement a method named fractional method, such that, given an

Odds instance, it returns a string representation of it in the format
"wont/will" (to be read as wont-to-will, as in “five-to-one”)

Run in
JShell:

OddsUtils.fractional(OddsUtils.rollingSix())

Output: ==> "5/1"
Run in
JShell:

OddsUtils.fractional(OddsUtils.drawingAce())

Output: ==> "48/4"
Task: Implement the decimal method now, such that, given an Odds instance,

it returns the reciprocal (i.e., the inverse) of its probability. This value
describes the odds in “one-in-how-many” terms.
For example, drawing an ace out of a deck of cards has a one-in-thir-
teen (cases) chance of happening.

Run in
JShell:

OddsUtils.decimal(OddsUtils.drawingAce())

Output: ==> 13.0
Run in
JShell:

OddsUtils.decimal(OddsUtils.rollingSix())

Output: ==> 6.0

 Composition in Java Lab 3

 Page 9 of 19 LuCE Lugano Computing Education

Research Lab

Task D4
Class: OddsUtils
Task:

In a betting context, the return value of the decimal method you just
implemented is the number that a bettor’s investment multiplies by.
For example, if the odds of an event such as Switzerland winning the
next Eurovision Song Contest are five-to-two, the successful bettor
will receive 3.5 times what they bet (they would get their money back
plus 2.5 times that much extra).

Implement the winnings method that computes, given an Odds in-
stance and the amount invested (type double), the amount of win-
nings a successful bettor would get.

Run in
JShell:

OddsUtils.winnings(new Odds(2, 5), 20.0)

Output: ==> 70.0

Task D5
Class: OddsUtils
Task: Implement a method, called complement, that computes the comple-

mentary event by inverting a given Odds instance.

For example, the complementary event of rolling a six is “not rolling a
six”.

Run in
JShell:

OddsUtils.complement(OddsUtils.rollingSix())

Output: ==> Odds[will=5, wont=1]
Run in
JShell:

OddsUtils.complement(OddsUtils.complement(OddsUtils.rollingSix()))

Output: ==> Odds[will=1, wont=5]

 Composition in Java Lab 3

 Page 10 of 19 LuCE Lugano Computing Education

Research Lab

Task D6
Class: OddsUtils
Task:

Another curious way of representing the likelihood of an event, used
by many North American betting agencies, is the “moneyline” format.

In case the event’s estimated probability is at most 50%, its money-
line number is positive and is computed as 100 * wont / will.
For example, the moneyline number for 7-to-2 odds is 350, because
100 × !

"
= 350. This positive number indicates that if you bet 100

monetary units and win, you profit 350 units in addition to getting
your bet back. A fifty–fifty scenario (1-to-1 odds) has a moneyline
number of 100.

In case the event’s estimated probability is over 50%, its moneyline
number is negative and is computed as -100 * will / wont.
For example, the moneyline number for 1-to-5 odds is -500, because
−100	 × #

$
= −500. This negative number indicates that if you want to

make a profit of 100 units, you have to place a bet of 500 units.

Implement the moneyline method that, given an Odds instance, re-
turns its moneyline value according to the two cases specified above.

Run in
JShell:

OddsUtils.moneyline(new Odds(2, 3))

Output: ==> 150.0
Run in
JShell:

OddsUtils.moneyline(new Odds(3, 1))

Output: ==> -300.0

Task D7
Class: OddsUtils
Task: Implement a cases2 method which computes the number of possible

cases for the combined outcome of two given events. For example,
two rolls of a die give rise to 36 (6 * 6) possible cases. A roll of a die
and a toss of a coin give rise to 12 (6 * 2) possible cases.

Run in
JShell:

OddsUtils.cases2(OddsUtils.rollingSix(), OddsUtils.rollingSix())

Output: ==> 36
Run in
JShell:

OddsUtils.cases2(OddsUtils.rollingSix(), OddsUtils.tossingHeads())

Output: ==> 12
Task:

Implement the both method which takes two Odds instances and re-
turns an Odds instance representing the likelihood of both events
happening together.

 Composition in Java Lab 3

 Page 11 of 19 LuCE Lugano Computing Education

Research Lab

The number of favorable cases in the combined event is the product
of the favorable cases of the two individual events.

The number of unfavorable cases can be computed by subtracting
from the total number of cases (cf. cases2) the favorable ones.

Run in
JShell:

OddsUtils.both(OddsUtils.rollingSix(), OddsUtils.rollingSix())

Output: ==> Odds[will=1, wont=35]
Run in
JShell:

OddsUtils.both(OddsUtils.tossingHeads(), OddsUtils.tossingHeads())

Output: ==> Odds[wont=1, will=3]

Task:

Implement the either method which takes two Odds instances and re-
turns an Odds instance representing the likelihood of either of the
events happening (the first one, the second one, or both).

The number of unfavorable cases in the combined event is the prod-
uct of the unfavorable cases of the two individual events.

The number of favorable cases can be computed by subtracting from
the total number of cases (cf. cases2) the unfavorable ones.

Run in
JShell:

OddsUtils.either(OddsUtils.tossingHeads(), OddsUtils.tossingHeads())

Output: ==> Odds[will=3, wont=1]
Run in
JShell:

OddsUtils.either(OddsUtils.rollingSix(), OddsUtils.rollingSix())

Output: ==> Odds[will=11, wont=25]

 Composition in Java Lab 3

 Page 12 of 19 LuCE Lugano Computing Education

Research Lab

Task D8
Class: OddsUtils
Task: Implement an eventHappens method that returns a boolean value

simulating whether an event with certain Odds happens, using a ran-
domly generated value.

You can call the Math.random() method to generate a random float-
ing-point number in the range [0, 1).

Hint: implement this method by comparing the random value with the
one returned by the probability method.

Run in
JShell:

OddsUtils.eventHappens(OddsUtils.tossingHeads())

Output: false
Run in
JShell:

OddsUtils.eventHappens(OddsUtils.tossingHeads())

Output: false
Run in
JShell:

OddsUtils.eventHappens(OddsUtils.tossingHeads())

Output: true

 Composition in Java Lab 3

 Page 13 of 19 LuCE Lugano Computing Education

Research Lab

E. Counting
Imagine a planet where inhabitants were prohibited from talking to themselves.
You could talk to every other inhabitant on the planet, but you would be punished
if you ever dared to talk to yourself.

Some arcane programming languages have such a strange limitation: A function can
call every other function, with one exception: it cannot call itself.
Why? There is a technical reason: If a function cannot be called while it is already
executing, then the runtime system does not need to maintain a call stack.
In modern languages, a function can call every function, including itself.

While it may be somewhat rare that humans talk to themselves, in programming
languages, it's quite common that functions call themselves. This provides a pow-
erful and general way of repeating a computation. Functions that call themselves
are called "recursive". You wrote recursive functions in Racket *SL.

Task E1
Class: Recurse
Task: Using recursion, implement the length method to return the length of

the given sequence of colors.
Remember key concepts when developing a recursive function: termina-
tion condition, base case, and recursive case.

Important: The length method has a type parameter <T> that allows it to
work with any different Sequence type instances (e.g, Sequence<Integer>,
Sequence<String>, Sequence<Graphic>, ...).
Important: Use the isEmpty and rest methods.

Run in
JShell:

Recurse.length(of())

Output: 0
Run in
JShell:

Recurse.length(empty())

Output: 0
Run in
JShell:

Recurse.length(cons(true, empty()))

Output: 1
Run in
JShell:

Recurse.length(of('a', 'b','c'))

Output: 3
Run in
JShell:

Recurse.length(range(0, 360, 36))

Output: 10
Run in
JShell:

Recurse.length(replicate(4, 10))

Output: 10
Run in
JShell:

Recurse.length(PacmanSprite.pacmans(100))

Output: 6

 Composition in Java Lab 3

 Page 14 of 19 LuCE Lugano Computing Education

Research Lab

F. Pacman Maze
We will now start creating graphics of assets of a game. We will re–use the code
that you write here in a future lab so that you may build your own working Pac-
man game.

You have already created a pacman sprite during Task B1, let’s now prepare the
graphics to build the maze.

The maze of a pacman game seems to follow a rather regular structure.

Without looking at the next page, can you decompose this pacman maze into
smaller graphics?

 Composition in Java Lab 3

 Page 15 of 19 LuCE Lugano Computing Education

Research Lab

Here is a possible decomposition:

We could compose the maze from a lot of square-shaped tiles.

How many kinds of tiles do we need? (Ignore the pacman and ghosts.)

Figure that out before looking at the next page.

 Composition in Java Lab 3

 Page 16 of 19 LuCE Lugano Computing Education

Research Lab

If we ignore small differences, we can see six kinds of wall tiles (2 straight walls
and 4 corners) and three kinds of floor tiles (just black, black with a small white
dot, and black with a large white pill).

Let's write three methods to produce these kinds of tiles.

Task F1
Class: PacmanMaze
Task:

Implement the straight method to return a graphic of a horizontal or
vertical straight tile.

The line should be centered, and 1/5 as thick as the tile's size.

Assert that the size is acceptable.

Use your toolbelt.

Run in
JShell:

show(PacmanMaze.straight(100, true))

Output:

Run in
JShell:

show(PacmanMaze.straight(100, false))

Output:

 Composition in Java Lab 3

 Page 17 of 19 LuCE Lugano Computing Education

Research Lab

Task F2
Class: PacmanMaze
Task:

Implement the corner method to return a graphic of a corner tile, ro-
tated by the given number of degrees.

Assert that the rotation is a multiple of 90. To give a helpful error
message when the assertion is violated, provide a string:
assert condition : string;
Assert that the size is acceptable.

Use your toolbelt.

Run in
JShell:

show(PacmanMaze.corner(100, 0))

Output:

Run in
JShell:

show(PacmanMaze.corner(100, 90))

Output:

Run in
JShell:

show(PacmanMaze.corner(100, 180))

Output:

Run in
JShell:

show(PacmanMaze.corner(100, 270))

Output:

Run in
JShell:

show(PacmanMaze.corner(100, 45))

Output: Must throw an AssertionError. Expected output in JShell should re-
semble the following text (numbers in the at lines may be different
for you):

| Exception java.lang.AssertionError
| at PacmanMaze.corner (PacmanMaze.java:21)
| at (#26:1)

 Composition in Java Lab 3

 Page 18 of 19 LuCE Lugano Computing Education

Research Lab

Task F3
Class: PacmanMaze
Task:

Implement the floor method to return a graphic of a floor tile, either
empty, with a dot, or with a pill.

The parameter dot determines whether the tile should contain a dot.
The parameter pill determines whether the tile should contain a pill.

Assert that we are not asked to produce a dot and a pill at the same
time.
Assert that the size is acceptable.

Use your toolbelt.

Run in
JShell:

show(PacmanMaze.floor(100, false, false))

Output:

Run in
JShell:

show(PacmanMaze.floor(100, true, false))

Output:

Run in
JShell:

show(PacmanMaze.floor(100, false, true))

Output:

Run in
JShell:

show(PacmanMaze.floor(100, true, true))

Output: Must throw an AssertionError. Expected output in JShell should re-
semble the following text (numbers in the at lines may be different
for you):

| Exception java.lang.AssertionError
| at PacmanMaze.floor (PacmanMaze.java:48)
| at (#21:1)

 Composition in Java Lab 3

 Page 19 of 19 LuCE Lugano Computing Education

Research Lab

Task F4
Class: PacmanMaze
Task:

Implement the demoMaze method to return a graphic of a bunch of tiles
composed into rows and columns.

Your maze must consist of at 3-by-3 tiles with the outer tiles repre-
senting the walls and the floor tile in the center containing the small
dot.

Assert that the tileSize is acceptable.

Use your toolbelt (e.g., above3 and beside3).

Run in
JShell:

show(PacmanMaze.demoMaze(100))

Output:

