
 Composition in Java Lab 4

 Page 1 of 15 LuCE Lugano Computing Education

Research Lab

Photo by Marvin Meyer on Unsplash

Lab 4
Mapping • Ghost • Mapping • Rotation • Color Hues • Employees

 Composition in Java Lab 4

 Page 2 of 15 LuCE Lugano Computing Education

Research Lab

Copy Your Lab 3 Toolbelt
In Lab 3 you added methods to your Toolbelt class. The Toolbelt class included in
the Lab 4 starter repository is missing these methods. Please copy the methods of
your Lab 3 Toolbelt class into the Lab 4 Toolbelt class, so that you can continue to
use the methods you develop (and add new ones you might need in the future).

 Composition in Java Lab 4

 Page 3 of 15 LuCE Lugano Computing Education

Research Lab

Task A – Mapping

To implement these tasks, add to your Toolbelt class the besides and aboves
methods from Workbook 04:

Graphic besides(Sequence<Graphic> graphics)
Graphic aboves(Sequence<Graphic> graphics)

Task A1
Class: Mapping
Task: Implement the colorsToRotatedSquares method. Each rotated

squares should be a square with a side of 50 and the given color,
rotated by 45 degrees.

Run in
JShell:

show(Toolbelt.besides(
Mapping.colorsToRotatedSquares(Mapping.standardColors())

))
Output:

Run in
JShell:

show(Toolbelt.besides(
Mapping.colorsToRotatedSquares(empty())

))
Output:
Run in
JShell:

show(Toolbelt.besides(
Mapping.colorsToRotatedSquares(of(BLACK))

))
Output:

 Composition in Java Lab 4

 Page 4 of 15 LuCE Lugano Computing Education

Research Lab

Task A2
Class: Mapping
Task: Implement the stringsToTexts method. Render the text in

MONOSPACED font with size 100, in black.

Can you figure out what the intersperse method, used below, does?

Run in
JShell:

show(Toolbelt.besides(
Mapping.stringsToTexts(of("Hi", "Hello", "BYE!"))

))
Output:

Run in
JShell:

show(Toolbelt.besides(
 intersperse(
 Mapping.redDot(),
 Mapping.stringsToTexts(of("Hi", "Hello", "BYE!"))
)
))

Output:

Task A3
Class: Mapping
Task: Implement the cosRectangles method. It should produce a

sequence of black rectangles given a sequence of Doubles. Each
rectangle has width 10 and height 100 * Math.cos(num), where num
is the numeric value from the sequence.

Run in
JShell:

show(Toolbelt.besides(
Mapping.cosRectangles(range(0, 2 * Math.PI, 0.1))

))
Output:

Task A4
Refactor the methods you implemented in the Mapping class. For each of the three
methods, create an additional method that performs the desired mapping on a
single element, and returns a single element. In all your existing methods, call the
corresponding single-element method to do the mapping of each element.
For example, for Task A2:

public static Sequence<Graphic> stringsToTexts(Sequence<String> strings) { … }

public static Graphic stringToText(String str) { … }

Do you see the similarity between the three sequence mapping methods?

 Composition in Java Lab 4

 Page 5 of 15 LuCE Lugano Computing Education

Research Lab

Task A5
Class: Mapping
Task: Implement a ring method to draw a ring with the given

outerDiameter, innerDiameter, and color. You can construct the
ring by overlaying a white circle on top of a colored circle.

Implement the colorsToRings method. The outerDiameter and
innerDiameter of the rings should be provided via parameters.

Assert appropriate parameter values.

Use your toolbelt.

How does your recursive call differ from the recursive calls in the
previous four methods?

Run in
JShell:

show(Toolbelt.besides(
Mapping.colorsToRings(50, 40, Mapping.standardColors())

))
Output:

Run in
JShell:

show(Toolbelt.besides(
Mapping.colorsToRings(20, 0, Mapping.standardColors())

))
Output:

Run in
JShell:

show(Toolbelt.besides(
Mapping.colorsToRings(60, 55, of(RED, GREEN, BLUE))

))
Output:

 Composition in Java Lab 4

 Page 6 of 15 LuCE Lugano Computing Education

Research Lab

Task B - Ghost
One of the key components of the Pacman game are the adversaries: the four
ghosts. Their names are Inky, Blinky, Pinky, and Clyde.

Task B1
Class: Ghost
Task: Implement the ghost and ghosts methods. Create helper methods

for the meaningful components of a ghost.

The ghost method takes the ghost width and color as its
parameters.
The ghosts method takes the ghosts width, a Sequence of Colors
and a boolean as parameters. For each Color in the sequence, a
ghost of the corresponding color should be created. The boolean
value determines whether the ghosts should be aligned
horizontally (true) or vertically (false).

Add meaningful assert statements to each method.

Use the besides, aboves and intersperse methods when
implementing the ghosts method!

Run in
JShell:

show(Ghost.ghost(200, Ghost.pinkyColor()))

Output:

Run in
JShell:

show(Ghost.ghosts(200, of(Ghost.inkyColor(),
Ghost.blinkyColor(), Ghost.pinkyColor(), Ghost.clydeColor()),
true))

Output:

Run in
JShell:

show(Ghost.ghosts(200, of(Ghost.pinkyColor(),
Ghost.clydeColor(), Ghost.inkyColor(), Ghost.blinkyColor()),
false))

Output:

 Composition in Java Lab 4

 Page 7 of 15 LuCE Lugano Computing Education

Research Lab

Task C – Rotation
Task C1
Class: Daisy
Task: Implement the daisy method. Create helper methods for the

meaningful components of a daisy, such as a petal, the entire ring of
petals, and the bud in the center.

A petal should be half the flower's diameter long,
and 1 3# as wide as it is long.
The diameter of the bud should be 1 4# the diameter of the flower.

Methods that produce the colors of the petals and the bud are
already provided. Feel free to change the colors to your liking.

Implement a composes method in your Toolbelt that, similarly to
the aboves and besides methods, takes a Sequence<Graphic> and
produces a Graphic by applying compose to all the graphics in the
sequence.

Use range to create a sequence of integers that contains the angles
of each petal. Write a mapping method that maps the sequence of
angles to a sequence of rotated petals. Write a method that reduces
the sequence of rotated petals by composing them into a single
graphic.

Add meaningful assert statements where needed.

Run in
JShell:

show(Daisy.daisy(200))

Output:

 Composition in Java Lab 4

 Page 8 of 15 LuCE Lugano Computing Education

Research Lab

Task D - Color Hues
Task D1
Class: ColorHues
Task: Implement the hueBar method. Add helper methods to properly

decompose your computation, such as hueToTile and huesToTiles

This should produce a hue bar consisting of 360 tiles, each tile is a
rectangle colored with a fully saturated (saturation 1.0), “full light”
(value 1.0) color in the corresponding hue (0 to 359). Use the hsv
method to create the color from the hue, saturation, and value.
Each color tile in the hue bar should have height 10.

Use the hsv method.

Run in
JShell:

show(ColorHues.hueBar())

Output:
Task D2
Class: ColorHues
Task: Implement the hueRing method with parameters for the

outerRadius and the innerRadius of the ring.

You may want to create a hueToSector and a huesToSectors
method, to map from a sequence of hues to a sequence of sectors.

Use the composes method you implemented in Task C1 for
reduction, i.e., to compose a sequence of appropriately rotated
and colored circular sectors.

Assert that parameters have acceptable values.

Use your toolbelt.

Run in
JShell:

show(ColorHues.hueRing(150, 100))

Output:

Run in
JShell:

show(ColorHues.hueRing(80, 0))

Output:

 Composition in Java Lab 4

 Page 9 of 15 LuCE Lugano Computing Education

Research Lab

Task E – Employees

In this task we will model the hierarchy of a company with a tree data structure.
A node of this tree contains the name of an employee, their salary, and references
to their subordinates. Each employee may have an arbitrary number of
subordinates (zero, one, or more).

We model a node of our tree with the Employee record class.

Your task is to implement a number of methods that traverse an Employee tree to
gather information.

For convenience when testing your implementations in JShell, you can use the
Employees.demoData() method that returns an Employee instance with the data of a
fictional company. It models the following hierarchy:

• Uniquely positioned employee
o Persistent employee

§ Motivated employee
• Proactive employee

o Innovative employee
§ Visionary employee

• Impactful employee
• Systematic employee

o Severe employee
o Functional employee
o Amazing employee

• Exclusive employee
§ Balanced employee

Task E1
Class: Employees
Task: Implement the numberOfSubordinates method, which given an

Employee, returns the total number of (direct and indirect)
subordinates.

Hint: traverse the tree using by writing recursive functions to count
the number of subordinates.
Hint: remember to not include the given employee when counting,
as they are not their own subordinate!

Run in
JShell:

Employees.numberOfSubordinates(Employees.demoData())

Output: ==> 12

 Composition in Java Lab 4

 Page 10 of 15 LuCE Lugano Computing Education

Research Lab

Task E2
Class: Employees
Task: Implement the totalSalary method, which given an Employee,

returns the total amount of salary of the given employee and all
their subordinates.

Hint: traverse the tree using by writing recursive functions to sum
the salaries.

Run in
JShell:

Employees.totalSalary(Employees.demoData())

Output: ==> 737

Task E3
Class: Employees
Task: Implement the nameOfSubordinates method, which given an

Employee, returns a sequence containing the names of all their
subordinates.

Note: The order of the elements in the sequence matters!
When traversing the tree of employees, proceed depth–first and in
pre-order.
In our example, this implies that the “Motivated employee” should
come before the “Innovative employee”.

Run in
JShell:

println(Employees.nameOfSubordinates(Employees.demoData()))

Output: Persistent employee
Motivated employee
Proactive employee
[…]
Exclusive employee
Balanced employee

 Composition in Java Lab 4

 Page 11 of 15 LuCE Lugano Computing Education

Research Lab

Task E4
Class: Employees
Task: Implement the flatten method, which given a hierarchy of

employees (an Employee instance), returns a sequence containing all
employees found within that hierarchy.

Note: this list includes the given employee as well, not just their
subordinates!
Note: The order of the elements in the sequence matters!
When traversing the tree of employees, proceed depth–first and in
pre-order.

Note: The example output presented below will differ slightly from
your output. The textual representation of the subordinates field
has an hexadecimal suffix which is irrelevant and you should ignore.

Run in
JShell:

println(Employees.flatten(Employees.demoData()))

Output: Employee[name=Uniquely positioned employee, salary=79,
 subordinates=jtamaro.en.data.Cons@33f88ab]
Employee[name=Persistent employee, salary=75,
 subordinates=jtamaro.en.data.Cons@27a8c74e]
Employee[name=Motivated employee, salary=55,
 subordinates=jtamaro.en.data.Empty@2d8f65a4]
[…]
Employee[name=Exclusive employee, salary=69,
 subordinates=jtamaro.en.data.Empty@6ee52dcd]
Employee[name=Empowering employee, salary=46,
 subordinates=jtamaro.en.data.Empty@4493d195]

 Composition in Java Lab 4

 Page 12 of 15 LuCE Lugano Computing Education

Research Lab

Task E5
Class: Employees
Task: Implement the plotSalaries method, which given a sequence of

employees (a Sequence<Employee> instance), returns a graphic which
depicts a bar plot of the salaries of the various employees.

The plot has two parts: the bars that indicate the salaries and the
names of the employees.

To draw the bars, create rectangles of width salaryPlotBarWidth()
and height equal to the salary value for each employee.
Then, add a transparent rectangle of width salaryPlotBarPadding()
in between the bars to pad them out.
To render the names, create a text of size 10 with color black and
rotate it.
Add some vertical padding (again of size salaryPlotBarPadding())
to the rendered name, so that the label will have some minimal
separation from the bars.
Make sure the text is horizontally aligned with the bars (hint: look at
the picture above and use the value of salaryPlotBarWidth()).

Finally, put the two parts one above the other.

Run in
JShell:

show(Employees.plotSalaries(Employees.flatten(Employees.demoData())))

Output: (see next page)

 Composition in Java Lab 4

 Page 13 of 15 LuCE Lugano Computing Education

Research Lab

 Composition in Java Lab 4

 Page 14 of 15 LuCE Lugano Computing Education

Research Lab

Task E6
Class: EmployeesTest
Task: To avoid having to "test" our growing implementation manually all

the time, we now make use of the testing code from a so-called test
class (instead of typing it into JShell over and over again).

The class EmployeesTests (found in the src/test/java/lab directory)
provides a comprehensive number of tests that will help you verify
whether your solution behaves correctly with respect to the given
specifications.

The convention we will follow here is: the tests for the hypothetical
method myMethod of the hypothetical class MyClass will be placed in
the methods which names start with testMyMethod of the hypothetical
class MyClassTest.

If you have an expression codeToTest and you want to check that it
evaluates to a certain expected value (or expression) expectedValue,
call Assert.assertEquals as
follows: Assert.assertEquals(expectedValue, codeToTest);

This is very similar to the function check-expect in Racket. There you
would write (check-expect actual-expression expected-
expression) to check that actual-expression evaluates to the same
value as expected-expression.
In Racket, we place calls to check-expect at the top-level of a
program. Here, calls to assertEquals are placed inside methods of a
JUnit test class.

Open the “Testing view” of VSCode (flask icon) and execute the tests
by clicking on the “Run tests” icon at the top (“double play” icon):

If some test fails, it means that there’s some problem with your code.
Identify which method is not working correctly by looking at the failed
test names and their assertions and fix your implementation of said
method.

DO NOT edit the tests’ code. The tests are there to help you uncover
certain situations you might have not accounted for.

 Composition in Java Lab 4

 Page 15 of 15 LuCE Lugano Computing Education

Research Lab

Output: All tests should pass:

