
 Composition in Java Lab 5

 Page 1 of 11 LuCE Lugano Computing Education

Research Lab

Photo by Marvin Meyer on Unsplash

Lab 5
Fibonacci • TimeStamp • TimeInterval

 Composition in Java Lab 5

 Page 2 of 11 LuCE Lugano Computing Education

Research Lab

Copy Your Lab 4 Toolbelt
In Lab 4 you added methods to your Toolbelt class. The Toolbelt class included in
the Lab 5 starter repository is missing these methods. Please copy the methods of
your Lab 4 Toolbelt class into the Lab 5 Toolbelt class, so that you can continue to
use the methods you develop (and add new ones you might need in the future).

 Composition in Java Lab 5

 Page 3 of 11 LuCE Lugano Computing Education

Research Lab

A. Fibonacci
We will gradually build up a visualization of the Fibonacci sequence as shown in
this TED talk by Arthur Benjamin (watching it is not required to complete the lab,
but it might be instructive anyway – it’s a great one!).

Task A1
Class: Fibonacci
Task:

The Fibonacci sequence is a sequence in which each number is the
sum of the two preceding ones (starting from 0):

0, 1, 1, 2, 3, 5, 8, 13, 21, …

𝑓𝑖𝑏(𝑛) = 0
0	𝑖𝑓	𝑛 = 0
1	𝑖𝑓	𝑛 = 1

𝑓𝑖𝑏(𝑛 − 1) + 𝑓𝑖𝑏(𝑛 − 2)

Implement using recursion the fib static method which given an
integer n, computes the nth number of the Fibonacci sequence.

Run in
JShell:

Fibonacci.fib(5)

Output: ==> 5
Run in
JShell:

Fibonacci.fib(6)

Output: ==> 8
Run in
JShell:

Fibonacci.fib(7)

Output: ==> 13

Task A2
Class: Fibonacci
Task:

Implement the static method tile, which takes one parameter fibN
of type int and produces a square proportional to the side length
(use 𝑓𝑖𝑏𝑁 × 10), color determined by tileColor(fibN), and has the
textual representation of the number n overlaid on top of it. This text
is of color BLACK, has size 10 and uses the MONOSPACED font.

Note: to convert an int to a String, use the String.valueOf(…)
method.

Run in
JShell:

show(Fibonacci.tile(Fibonacci.fib(7)))

Output:

 Composition in Java Lab 5

 Page 4 of 11 LuCE Lugano Computing Education

Research Lab

 show(Fibonacci.tile(Fibonacci.fib(10)))

Task A3
Class: Fibonacci
Task:

Implement the justxapose static method, which takes two Graphic
instances and a boolean. The value of the boolean determines
whether the two graphics should be juxtaposed horizontally (true)
or vertically (false).

Run in
JShell:

show(Fibonacci.juxtapose(Fibonacci.tile(Fibonacci.fib(1)),
 Fibonacci.tile(Fibonacci.fib(2)),
 true))

Output:

 show(Fibonacci.juxtapose(

 Fibonacci.juxtapose(
 Fibonacci.tile(Fibonacci.fib(1)),
 Fibonacci.tile(Fibonacci.fib(2)),
 true),
 Fibonacci.tile(Fibonacci.fib(3)),
 false)
)

 Composition in Java Lab 5

 Page 5 of 11 LuCE Lugano Computing Education

Research Lab

Task A4
Class: Fibonacci
Task:

Implement using recursion the fibonacciRectangle static method,
which takes an int parameter n and produces the rectangle
constructed by juxtaposing n tiles, each having the side of the nth
Fibonacci number.

Note: there is no tile corresponding to the 0th Fibonacci number.

Note: each time the tile is juxtaposed in the opposite direction
compared to the previous juxtaposition: the first two tiles (1 and 1)
are juxtaposed horizontally, the third tile (2) is juxtaposed vertically,
the fourth tile (3) is juxtaposed horizontally again and so on.

Run in
JShell:

show(Fibonacci.fibonacciRectangle(10))

Output:

 Composition in Java Lab 5

 Page 6 of 11 LuCE Lugano Computing Education

Research Lab

B. Modeling a Point in Time

(Throughout these exercises, you will encounter some questions that help you to
understand the problem. Answer them in the dedicated comments directly within
the Java source code before implementing the methods.)

Task B1

Let's develop a class named TimeStamp that can be used to represent a point in time.
Let's assume that the time in the modelled system is always increasing.

Before hacking any code, let's see how we would use such a TimeStamp class.

new TimeStamp(4) // Create a TimeStamp
new TimeStamp(2) // Create another TimeStamp

The above code would create two TimeStamp objects, one representing time 4, the
other representing time 2. Let's assume that smaller numbers represent earlier
points in time.

Class: TimeStamp
Task:

Implement the TimeStamp record class. It should have only 1
component of type int, named time.

Run in
JShell:

new TimeStamp(1)

Output: ==> TimeStamp[time=1]
Run in
JShell:

new TimeStamp(2).time()

Output: ==> 2

 Composition in Java Lab 5

 Page 7 of 11 LuCE Lugano Computing Education

Research Lab

Task B2

Now we may want to compare two TimeStamp instances.
Assume that start is new TimeStamp(2) and end is new TimeStamp(4):

end.equalTo(start) // Check whether start and end represent the same point in time
end.after(start) // Check whether end comes after start
end.before(start) // Check whether end comes before start

• What value will the above tree expressions produce?
• Do we really need a before and an after method? Do we want both?

Now, consider we also have another TimeStamp instance, t2, standing for new
TimeStamp(2). Given this expression:

t2.equalTo(start)

• What value should the above expression have?
• Are t2 and start two separate objects?

Finally, we want to easily get the later or earlier of two TimeStamps as follows:

start.getEarlier(end)
start.getLater(end)

• What value would the following expression produce?

(end.getEarlier(start)).equalTo(start.getLater(end))

Class: TimeStamp
Task:

Implement the equalTo, before, after, getEarlier, getLater instance
methods of the TimeStamp class as described above.

Test: Make sure all tests of the TimeStampTest class successfully pass
before proceeding to the next task!

Output:

 Composition in Java Lab 5

 Page 8 of 11 LuCE Lugano Computing Education

Research Lab

C. Modeling a Time Interval

Task C1
Now we develop a class called TimeInterval that represents the interval between
two TimeStamp instances.

new TimeInterval(begin, end)

A TimeInterval is a half–open interval [𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑). It excludes the end point.
We can visualize a TimeInterval as a sequence of letters (e.g., O), one for every
TimeStamp it includes. Note that the end point is not included.

..OOOOOO.........
 │ │
 │ └─ end
 └─────── begin

Class: TimeInterval
Task:

Implement the TimeInterval record class. It should have two
components of type TimeStamp, named begin and end.

Run in
JShell:

new TimeInterval(new TimeStamp(1), new TimeStamp(3))

Output: ==> TimeInterval[begin=TimeStamp[time=1],
 end=TimeStamp[time=3]]

Run in
JShell:

new TimeInterval(new TimeStamp(3), new TimeStamp(6)).begin()

Output: ==> TimeStamp[time=3]
Run in
JShell:

new TimeInterval(new TimeStamp(3), new TimeStamp(6)).end()

Output: ==> TimeStamp[time=6]

 Composition in Java Lab 5

 Page 9 of 11 LuCE Lugano Computing Education

Research Lab

Task C2
As Allen has shown in his paper Maintaining Knowledge about Temporal Intervals,
a time interval supports 13 different predicates.
The following table lists and visualizes them with a little diagram. TTT refers to
“this” TimeInterval, i.e. the one we are invoking the method on, whereas OOO refers
to the “other” TimeInterval, i.e. the one passed into the parameter. For each
predicate we want to have an instance method in TimeInterval that checks whether
two TimeInterval instances (e.g., TTT and OOO) are in that relation.

Allen Sym Method Name Diagram Comment
= equalToTTT....

....OOO....
Symmetric

< before TTT........
....OOO....

Inverse of after

> afterTTT
....OOO....

Inverse of before

m meetsBeginOf .TTT.......
....OOO....

Inverse of meetsEndOf

mi meetsEndOfTTT.
....OOO....

Inverse of meetsBeginOf

o overlapsBeginOf ...TTT.....
....OOO....

Inverse of overlapsEndOf

oi overlapsEndOfTTT...
....OOO....

Inverse of overlapsBeginOf

d duringTTT....
...OOOOO...

Inverse of contains

di contains ...TTTTT...
....OOO....

Inverse of during

s starts ...TTT.....
...OOOOO...

Inverse of startedBy

si startedBy ...TTTTT...
...OOO.....

Inverse of starts

f finishesTTT...
...OOOOO...

Inverse of finishedBy

fi finishedBy ...TTTTT...
.....OOO...

Inverse of finishes

In the above table, e.g., the before predicate (Allen’s “<”) represents whether this
interval (TTT) happened before the other interval (OOO).

Note that any given pair of intervals is exactly in one of the 13 predicates. Thus, for
any given pair of TimeInterval instances, one and only one of the 13 predicates will
be true. For example, if a.before(b) then it does not a.meetsBeginOf(b), since
a.before(b) implies that there is a gap between a and b.

 Composition in Java Lab 5

 Page 10 of 11 LuCE Lugano Computing Education

Research Lab

12 of the 13 predicates (all except for equalTo) have inverses. E.g., the inverse of
starts is startedBy: a.starts(b) is the same as b.startedBy(a).

• For the intervals i13 = [1, 3) and i47 = [4, 7), which predicate is true (i.e., what
is the name of the method xxx that returns true when called like
i13.xxx(i47))?

• And which predicate is its inverse (i.e., what is the name of the method yyy
that returns true when called like i47.yyy(i13))?

Beside the above 13 predicates, we would also like to provide two derived
predicates: intersects and disjoint.
Two TimeInterval instances intersect if they have some point in common.
Two TimeInterval instances are disjoint if they have no point in common.

• Try to define intersects as a disjunction (a logical formula that connects
clauses using “or”) of some of the above 13 predicates.

• Try to define disjoint as a disjunction of some of the above 13 predicates.
• Are these two predicates (intersect and disjoint) mutually exclusive, that

is, a pair of TimeInterval instances either intersects or is disjoint?

Finally, we want a way to compute the intersection and the hull of two
TimeInterval instances. The intersection corresponds to the largest interval
included in both intervals. The hull corresponds to the smallest interval including
both intervals.

Class: TimeInterval
Task:

Implement the 13 predicates and intersects, disjoint,
intersection and hull as instance methods of the TimeInterval
record class.

Note: each predicate, intersects and disjoint should all take one
parameter of type TimeInterval and return a boolean value. On the
other hand, intersection and hull take one parameter of type
TimeInterval and return a TimeInterval instance.

Note: take advantage of the information about certain predicates
being the inverse of others, this will help you simplify your code.

Note: if we have to return a TimeInterval but there’s no meaningful
TimeInterval, such as when computing a.intersection(b) when
a.intersects(b) is false, return a TimeInterval from TimeStamp 0 to
TimeStamp 0 (empty interval).

Note: you are NOT allowed to use TimeStamp.time() to implement
any method in TimeInterval (there is no need!). Instead, use the
instance methods implemented in Task B2.

 Composition in Java Lab 5

 Page 11 of 11 LuCE Lugano Computing Education

Research Lab

Test: Make sure all tests of the TimeIntervalTest class are passing.

Output:

