
 Composition in Java Lab 6

 Page 1 of 9 LuCE Lugano Computing Education

Research Lab

Photo by Marvin Meyer on Unsplash

Lab 6
AST • Bytecode • Tests

 Composition in Java Lab 6

 Page 2 of 9 LuCE Lugano Computing Education

Research Lab

A. Abstract Syntax Tree

You’re now going to start building a programming language called LemaLang.
LemaLang is a simple programming language with few features. When building a
programming language, there are many components involved. Some notable
components that are relevant to this lab are the parser and the interpreter. A parser
turns a string containing the source code of a program into an Abstract Syntax Tree
(AST): a tree representation of the program (similar to the Expression Tree). In this
exercise we will not build a parser, but instead we will manually build ASTs to

1. Evaluate expressions.
2. Unparse the AST back into source code (the opposite of what a parser does).
3. Analyze it to find all divisions by zero.

The goal of this first exercise is to implement a class hierarchy that consists of
classes used to represent the Abstract Syntax Trees (ASTs) of LemaLang. We will
model such trees by creating different classes for the different kinds of tree nodes.

We will support representing expressions consisting of (integer) literals and
operations on them: addition, subtraction, multiplication, division (binary
operators which apply the corresponding arithmetic operation on two integer
values), and negation (the unary minus operator which flips the sign of an integer
value).

Each node of this AST is represented by a class in the lab.nodes package that
implements the lab.nodes.Node interface. This interface declares two methods:

• the evaluate() method, which returns an int value which corresponds to the
result of the evaluation of the given node;

• the unparse() method, which returns a parenthesized String representation
of the tree.

The LemaLang language represented by our AST allows to create expressions like
((6) / ((2) * ((1) + (2)))) as

new Div(
 new Lit(6),
 new Mul(
 new Lit(2),
 new Add(
 new Lit(1),
 new Lit(2)
)
)
)

 Composition in Java Lab 6

 Page 3 of 9 LuCE Lugano Computing Education

Research Lab

Task A1
Class: lab.nodes.Lit
Task: Implement the Lit record class, which:

• Has only one component, value of type int
• Implements the Node interface

o The evaluate() method should simply return the value of
the value() component of this record.

o The unparse() method should return a String containing
the value within a pair of parentheses

Run in
JShell:

new Lit(1)

Output: ==> Lit[value=1]
Run in
JShell:

new Lit(2).evaluate()

Output: ==> 2

Run in
JShell:

new Lit(10).unparse()

Output: ==> "(10)"

Task A2
Class: lab.nodes.Neg
Task: Implement the Neg record class, which:

• Has only one component, operand of type Node
• Implements the Node interface

o The evaluate() method should return the result of the
evaluation of the operand with its sign inverted.

o The unparse() method should return a String containing
the unparse() value of the operand prefixed with a
negation sign, all enclosed within parentheses

Run in
JShell:

new Neg(new Lit(9))

Output: ==> Neg[operand=Lit[value=9]]
Run in
JShell:

new Neg(new Lit(3)).evaluate()

Output: ==> -3
Run in
JShell:

new Neg(new Neg(new Lit(12))).evaluate()

Output: ==> 12
Run in
JShell:

new Neg(new Lit(4)).unparse()

Output: ==> "(-(4))"

 Composition in Java Lab 6

 Page 4 of 9 LuCE Lugano Computing Education

Research Lab

Task A3
Class: lab.nodes.Add
Task: Implement the Add record class, which:

• Has 2 components, left and right, both of type Node
• Implements the Node interface

o The evaluate() method should return the result of the
evaluation of left summed with the result of the
evaluation of right.

o The unparse() method should return a String representing
the addition (parenthesized)

Run in
JShell:

new Add(new Lit(1), new Lit(2))

Result: ==> Add[left=Lit[value=1], right=Lit[value=2]]
Run in
JShell:

new Add(new Lit(1), new Lit(2)).evaluate()

Result: ==> 3
Run in
JShell

new Add(new Lit(4), new Neg(new Lit(3))).evaluate()

Result: ==> 1
Run in
JShell:

new Add(new Lit(0), new Neg(new Lit(1))).unparse()

Result: ==> "((0) + (-(1)))"

 Composition in Java Lab 6

 Page 5 of 9 LuCE Lugano Computing Education

Research Lab

Task A4
Class: lab.nodes.Sub, lab.nodes.Mul, lab.nodes.Div
Task: Implement the remaining three binary operation record classes Sub

(subtraction), Mul (multiplication) and Div (division).
These are expected to work exactly like the Add class implemented in
the previous task, except that they perform a different binary operation
on the left and right values (-, * and / respectively).

Note: each record class must:

• Have 2 components, left and right, both of type Node
• Implement the Node interface and its methods

Run in
JShell:

new Sub(new Lit(7), new Lit(5)).evaluate()

Output: ==> 2
Run in
JShell:

new Mul(new Lit(111), new Lit(111)).evaluate()

Output: ==> 12321
Run in
JShell:

new Div(new Lit(14), new Lit(5)).evaluate()

Output: ==> 2
Run in
JShell:

new Div(new Lit(6), new Mul(new Lit(2),
 new Add(new Lit(1), new Lit(2)))).unparse()

Output: ==> "((6) / ((2) * ((1) + (2))))"
 Do you feel the pain of having to write almost the same code 4 times

to produce the different operators? We will see in the coming weeks
how to use the type hierarchy to reduce the code duplication.

 Composition in Java Lab 6

 Page 6 of 9 LuCE Lugano Computing Education

Research Lab

Task A5
Class: lab.nodes.Node, lab.nodes.Add, lab.nodes.Sub, lab.nodes.Mul,

lab.nodes.Div, lab.nodes.Lit, lab.nodes.Neg
Task: Add a new method to the Node interface:

• boolean containsDivisionByZero();

This method is used to check whether a given node contains a division
by zero.

Now write the appropriate implementation of this method in all the
classes that implement the Node interface:

• Lit
• Neg
• Add, Sub, Mul, Div

Note that the check must be performed on the entire tree, which means
that it’s not enough to check whether the “current” node is a division by
zero, but it’s necessary to check whether any child node contains a
division by zero.

Run in
JShell:

// Expr: 1 / 0
new Div(new Lit(1), new Lit(0)).containsDivisionByZero()

Output: ==> true
Run in
JShell:

// Expr: -(4 / 2)
new Neg(new Div(new Lit(4), new Lit(2))).containsDivisionByZero()

Output: ==> false
Run in
JShell:

// Expr: 2 / (1 - 1)
new Div(new Lit(2),
 new Sub(new Lit(1), new Lit(1))).containsDivisionByZero()

Output: ==> true

 Composition in Java Lab 6

 Page 7 of 9 LuCE Lugano Computing Education

Research Lab

Task A6
Class: TEST: lab.nodes.SubTest, lab.nodes.MulTest, lab.nodes.DivTest,

lab.nodes.NegationTest
Task: Look at the src/test/java/lab/nodes/AddTest.java file in your project.

This test class contains a 4 tests for the lab.nodes.Add record class:

1. testUnparse(): to test the implementation of the unparse()
method.

2. testEvaluate(): to test the implementation of the evaluate()
method.

3. testContainsDivisionByZeroLeft(): to test the implementation
of the containsDivisionByZero() in a situation in which you
expect the method to return true because there’s a division by
zero in the left sub–expression.

4. testContainsDivisionByZeroRight(): to test the implementation
of the containsDivisionByZero() in a situation in which you
expect the method to return true because there’s a division by
zero in the right sub–expression.

5. testDoesNotContainDivisionByZero(): to test the
implementation of the containsDivisionByZero() in a situation
in which you expect the method to return false (there’s no
division by zero in the expression)

Write the test methods for the lab.nodes.SubTest, lab.nodes.MulTest,
lab.nodes.DivTest and lab.nodes.NegationTest classes using the tests
written in the lab.nodes.AddTest class as an example.

Run: All tests should pass
Output:

 Composition in Java Lab 6

 Page 8 of 9 LuCE Lugano Computing Education

Research Lab

B. Family Tree

In this exercise you will model a family tree using subtyping polymorphism, writing
the whole hierarchy from the ground up.

The family tree is modeled by having a Person which has two parents: a biological
mother and a biological father, which may be known Persons or may be Unknown.
If the parents are known, then they themselves are Persons who have two parents
(recursive case). Otherwise, if the parents are not known, they are Unknown (base
case) and so are their parents.

Task B1
Class: lab.family.FamilyTree, lab.family.Person, lab.family.Unknown
Task: 1. Define an interface called FamilyTree in the lab.family package.

This interface declares two methods, mum() and dad() that take
no parameter and return a value of type FamilyTree.

2. Define a record class called Unknown in the lab.family package.

It is used to represent an unknown person in a family tree.
This record class has no component and implements the
FamilyTree interface.
For the implementation of both the mum() and dad() methods
needed to fulfill the contract of the FamilyTree interface, return
a new Unknown instance.

3. Define a record class called Person in the lab.family package.

It is used to represent a known person in a family tree.
This record class has 3 components: name (of type String), mum and
dad (both of type FamilyTree) and Person itself implements the
FamilyTree interface.

Run in
JShell:

new Person("A",
 new Person("B", new Unknown(), new Unknown()),
 new Person("C", new Unknown(), new Unknown()))

Output: ==> Person[name=A,
 mum=Person[name=B, mum=Unknown[], dad=Unknown[]],
 dad=Person[name=C, mum=Unknown[], dad=Unknown[]]]

Task B2
Class: lab.family.Person
Task: Implement the following instance methods in the Person class that

provide access to other members of the family tree:

• FamilyTree maternalGrandma()
• FamilyTree maternalGrandpa()
• FamilyTree paternalGrandma()
• FamilyTree paternalGrandpa()

 Composition in Java Lab 6

 Page 9 of 9 LuCE Lugano Computing Education

Research Lab

Run in
JShell:

new Person("A",
 new Person("B",
 new Person("C", new Unknown(), new Unknown()),
 new Unknown()),
 new Person("D", new Unknown(), new Unknown())
).maternalGrandma()

Output: ==> Person[name=C, mum=Unknown[], dad=Unknown[]]

Task B3
Class: TEST: lab.family.PersonTest
Task: Similarly to what you did in Task C1, write tests for the four methods you

implemented in Task B2:

• testMaternalGrandma()
• testMaternalGrandpa()
• testPaternalGrandma()
• testPaternalGrandpa()

The tests should use Assert.assertEquals to compare two instances of
Person.

Run: All tests should pass
Output:

