
 Composition in Java Lab 7

 Page 1 of 21 LuCE Lugano Computing Education

Research Lab

Photo by Marvin Meyer on Unsplash

Lab 7
Reductions • Mappings • Filterings • Animated Pacman with IO.animate •
Animated Pacman with IO.interact • Interactive Pacman Application with

IO.interact

 Composition in Java Lab 7

 Page 2 of 21 LuCE Lugano Computing Education

Research Lab

Copy Your Lab 5 Toolbelt
In Lab 5 you added methods to your Toolbelt class. The Toolbelt class included in
the Lab 7 starter repository is missing these methods. Please copy the methods of
your Lab 5 Toolbelt class into the Lab 7 Toolbelt class, so that you can continue to
use the methods you develop (and add new ones you might need in the future).

 Composition in Java Lab 7

 Page 3 of 21 LuCE Lugano Computing Education

Research Lab

A. Reductions
There are some very common reductions. Let's implement methods with good
names for those, so we can just call those methods instead of having to call reduce
and think about the combining function and neutral element each time.

Task A1
Class: Toolbelt
Task: First, implement a map, filter, and reduce method in your toolbelt.

public static <A,B> Sequence map(
 Function1<A,B> mapper,
 Sequence<A> sequence
)
public static <E> Sequence<E> filter(
 Function1<E,Boolean> predicate,
 Sequence<E> sequence
)
public static <R,E> R reduce(
 R neutralElement,
 Function2<E,R,R> combiner,
 Sequence<E> sequence
)

Task A2
Class: Reductions
Task: Given the following existing methods in the Reduction class:

public static double sumAB(double a, double b)
public static double minAB(double a, double b)
public static double maxAB(double a, double b)
public static <T> int incB(T a, int b) { return b + 1; }

Using method references to the above methods, and Toolbelt.reduce,
implement the following methods:

public static double sum(Sequence<Double> values)
public static double min(Sequence<Double> values)
public static double max(Sequence<Double> values)
public static <T> int length(Sequence<T> values)

Think hard about how length's combining function differs from the other
three combining functions. What does it do with the element? What does
it need to know about the element? What does it need to know about
the type of the element?

Hint: if you run into some error regarding type incompatibility between
Integer and Double, make sure that you are using the literals of the

 Composition in Java Lab 7

 Page 4 of 21 LuCE Lugano Computing Education

Research Lab

appropriate type (double literals have a decimal part, while int literals
don’t)

Note: use Double.POSITIVE_INFINITY and Double.NEGATIVE_INFINITY as
the return value for when an empty sequence is given as the argument
of the min and max methods respectively.

Run in
JShell:

Reductions.sum(of(1.0, 2.0, 3.0))

Result: ==> 6.0
Run in
JShell:

Reductions.sum(empty())

Result: ==> 0.0
Run in
JShell:

Reductions.min(of(1.0, 2.0, 3.0))

Result: ==> 1.0
Run in
JShell:

Reductions.min(empty())

Result: ==> Infinity
Run in
JShell:

Reductions.max(of(1.0, 2.0, 3.0))

Result: ==> 3.0
Run in
JShell:

Reductions.max(empty())

Result: ==> -Infinity
Run in
JShell:

Reductions.length(of(1.0, 2.0, 3.0))

Result: ==> 3
Run in
JShell:

Reductions.length(empty())

Result: ==> 0

 Composition in Java Lab 7

 Page 5 of 21 LuCE Lugano Computing Education

Research Lab

Task A3
Class: Reductions
Task: Given the following existing methods in the Reduction class:

public static boolean andAB(boolean a, boolean b)
public static boolean orAB(boolean a, boolean b)
public static String joinBA(String a, String b)

Using method references to the above methods, and Toolbelt.reduce,
implement the following methods:

public static boolean and(Sequence<Boolean> values)
public static boolean or(Sequence<Boolean> values)
public static String join(Sequence<String> values)

Note: always return true and false when the sequences are empty in
the implementation of the methods and and or respectively. For the join
method, return an empty string instead.

Run in
JShell:

Reductions.and(of(true, false, true))

Result: ==> false
Run in
JShell:

Reductions.and(empty())

Result: ==> true
Run in
JShell:

Reductions.or(of(true, false, true))

Result: ==> true
Run in
JShell:

Reductions.or(empty())

Result: ==> false
Run in
JShell:

Reductions.join(of("He", "ll", "o"))

Result: ==> "Hello"
Run in
JShell:

Reductions.join(empty())

Result: ==> ""

Task A4
Class: ReductionsPropertiesTest
Tests: Test your code by running the tests provided in the

ReductionsPropertiesTest class.

 Composition in Java Lab 7

 Page 6 of 21 LuCE Lugano Computing Education

Research Lab

Task A5
Class: Reductions
Task: Given the following existing methods in class Graphics:

public static Graphic above(Graphic a, Graphic b)
public static Graphic beside(Graphic a, Graphic b)

Using method references to the above methods, and Toolbelt.reduce,
implement the following methods:

public static Graphic aboves(Sequence<Graphic> values)
public static Graphic besides(Sequence<Graphic> values)

Run in
JShell:

show(
Reductions.aboves(of(
 rectangle(100, 10, RED),
 rectangle(200, 10, GREEN),
 rectangle(300, 10, BLUE)
))

);
Output:

Run in
JShell:

show(Reductions.aboves(empty()));

Output: (empty graphic)
Run in
JShell:

show(
Reductions.besides(of(
 rectangle(10, 10, RED),
 rectangle(10, 20, GREEN),
 rectangle(10, 30, BLUE)
))

);
Output:

Run in
JShell:

show(Reductions.besides(empty()));

Output: (empty graphic)

 Composition in Java Lab 7

 Page 7 of 21 LuCE Lugano Computing Education

Research Lab

Task A6
Class: Reductions
Task: Given the following existing methods in class Graphics:

public static Graphic overlay(Graphic a, Graphic b)
public static Graphic compose(Graphic a, Graphic b)

Using method references to the above methods, and Toolbelt.reduce,
implement the following methods:

public static Graphic overlays(Sequence<Graphic> values)
public static Graphic composes(Sequence<Graphic> values)

Run in
JShell:

show(
Reductions.overlays(of(
 rectangle(10, 10, RED),
 rectangle(20, 20, GREEN),
 rectangle(30, 30, BLUE)
))

);
Output:

Run in
JShell:

show(Reductions.overlays(empty()));

Output: (empty graphic)
Run in
JShell:

show(
Reductions.composes(of(
 pin(BOTTOM_RIGHT, rectangle(10, 10, RED)),
 pin(BOTTOM_RIGHT, rectangle(20, 20, GREEN)),
 pin(BOTTOM_RIGHT, rectangle(30, 30, BLUE))
))

);
Output:

Run in
JShell:

show(Reductions.composes(empty()));

Output: (empty graphic)

 Composition in Java Lab 7

 Page 8 of 21 LuCE Lugano Computing Education

Research Lab

B. Mappings
Task B1
Class: Mappings
Task: Given the following existing methods (that convert between types) in

your Mappings class:

public static int d2i(double d)
public static int s2i(String s)
public static double i2d(int i)
public static double s2d(String s)
public static String i2s(int i)
public static String d2s(double d)

Using method references to the above methods, and Toolbelt.map,
implement the following methods:

public static Sequence<Integer> d2iSeq(Sequence<Double> vals)
public static Sequence<Integer> s2iSeq(Sequence<String> vals)

public static Sequence<Double> i2dSeq(Sequence<Integer> vals)
public static Sequence<Double> s2dSeq(Sequence<String> vals)

public static Sequence<String> i2sSeq(Sequence<Integer> vals)
public static Sequence<String> d2sSeq(Sequence<Double> vals)

Run in
JShell:

Reductions.join(
 intersperse(
 " + ",
 concat(
 Mappings.d2sSeq(of(0.1, 3.14, 0.2)),
 Mappings.i2sSeq(of(1, 3, 2))
)
)
)

Result: ==> "0.1 + 3.14 + 0.2 + 1 + 3 + 2"
Run in
JShell:

Reductions.sum(
 concat(
 Mappings.i2dSeq(of(1, 3, 2)),
 of(0.1, 3.14, 0.2)
)
)

Result: Determine for yourself what this should produce

 Composition in Java Lab 7

 Page 9 of 21 LuCE Lugano Computing Education

Research Lab

Run in
JShell:

Reductions.sum(
 concat(
 of(0.1, 3.14, 0.2),
 Mappings.i2dSeq(of(1, 3, 2))
)
)

Result: Determine yourself what this should produce
Run in
JShell:

Reductions.sum(
 concat(
 Mappings.s2dSeq(of("0.1", "3.14", "0.2")),
 Mappings.i2dSeq(Mappings.s2iSeq(of("1", "3", "2")))
)
)

Result: Determine yourself what this should produce

Task B2
Class: Mappings
Task: Given the provided record class Person.

Hint (not covered in workbook): When using method references for
instance methods, a nullary method (e.g., a getter) will have type
Function1<C,R>, where C is the type of the class, and R is the return type
of the method.

Using method references to the firstName, age, and fullName instance
methods of Person, and Toolbelt.map, implement the following
methods:

public static Sequence<String> firstNames(Sequence<Person> ps)
public static Sequence<String> fullNames(Sequence<Person> ps)
public static Sequence<Integer> ages(Sequence<Person> ps)

Run in
JShell:

println(
 Mappings.firstNames(of(
 new Person("John", "Java", 24),
 new Person("Sarah", "Scala", 25),
 new Person("Olin", "OCaml", 23)
))
)

Output: John
Sarah
Olin

Run in
JShell:

println(
 Mappings.ages(of(
 new Person("John", "Java", 24),
 new Person("Sarah", "Scala", 25),
 new Person("Olin", "OCaml", 23)
))
)

Output: 24
25
23

 Composition in Java Lab 7

 Page 10 of 21 LuCE Lugano Computing Education

Research Lab

Run in
JShell:

println(
 Mappings.fullNames(of(
 new Person("John", "Java", 24),
 new Person("Sarah", "Scala", 25),
 new Person("Olin", "OCaml", 23)
))
)

Result: John Java
Sarah Scala
Olin OCaml

Task B3
Class: MappingsPropertiesTest
Tests: Test your code by running the tests provided in the

MappingsPropertiesTest class.

 Composition in Java Lab 7

 Page 11 of 21 LuCE Lugano Computing Education

Research Lab

C. Filterings
Task C1
Class: Person, Filterings
Task: In the provided record class Person, implement the following instance

methods:

// is person older than 70?
public boolean isOldie()

// does person have first name "Jim"
public boolean isJim()

Using method references to the isOldie and isJim instance methods of
Person, and Toolbelt.filter, implement the following methods:

// persons older than 70
public static Sequence<Person> oldies(Sequence<Person> ps)

// persons with first name "Jim"
public static Sequence<Person> jims(Sequence<Person> ps)

Run in
JShell:

println(
 Filterings.oldies(of(
 new Person("Jim", "Halpert", 31),
 new Person("James Morgan", "McGill", 48),
 new Person("Marquis", "Warren", 74)
))
);

Result: Person[firstName=Marquis, lastName=Warren, age=74]
Run in
JShell:

println(
 Filterings.jims(of(
 new Person("Jim", "Halpert", 31),
 new Person("James Morgan", "McGill", 48),
 new Person("Marquis", "Warren", 74)
))
);

Result: Person[firstName=Jim, lastName=Halpert, age=31]

 Composition in Java Lab 7

 Page 12 of 21 LuCE Lugano Computing Education

Research Lab

Task C2
Class: PersonTest
Task: Write unit tests for the methods of the Person record class in the

appropriate file (src/tests/java/lab/PersonTest.java).

Tests: The written tests should pass

Task C3
Class: Filterings
Task: Challenge Question!

If you can’t find a solution to this one, skip it and try again next week.

Implement the following method using Toolbelt.filter:

// persons with exact given age
public static Sequence<Person> aged(int age, Sequence<Person> ps)

Hint: You can add another class if that helps, but you are only allowed
to use filter to process the list (no loop or recursion).

Run in
JShell:

println(
 Filterings.aged(48, of(
 new Person("Jim", "Halpert", 31),
 new Person("James Morgan", "McGill", 48),
 new Person("Marquis", "Warren", 74)
))
);

Result: Person[firstName=James Morgan, lastName=McGill, age=48]
Run in
JShell:

println(
 Filterings.aged(30, of(
 new Person("Jim", "Halpert", 31),
 new Person("James Morgan", "McGill", 48),
 new Person("Marquis", "Warren", 74)
))
);

Result: (nothing / empty list)
Tests: Test your code by running the tests provided in the

FilteringPropertiesTest class.

 Composition in Java Lab 7

 Page 13 of 21 LuCE Lugano Computing Education

Research Lab

D. Animated Pacman with IO.animate
First, you just (re)implement an animated pacman using IO.animate.

Task D1
Class: AnimatedPacman
Task: Implement the method pacman:

public static Graphic pacman(int mouthAngle)

It should produce a pacman with a partially open mouth (0 to 180
degrees), like what you already implemented in Lab 1 and produced a
film strip of and animated in Lab 3.

Pacman’s height should be 100.

Run in
JShell:

show(AnimatedPacman.pacman(45))

Output:

 Composition in Java Lab 7

 Page 14 of 21 LuCE Lugano Computing Education

Research Lab

Task D2
Class: AnimatedPacman
Task: Implement the method animation:

public static void animation()

This method is special. It has void as a return type. It does not
actually return any value. It should just call IO.animate with three
arguments:

- a sequence of pacman Graphics with gradually more open
mouths (use range and map to produce them)

- the value true (to loop the animation)
- the value 25 (for 25 milliseconds between animation frames)

Note: the mouth angle should change from 0 to 180 and then “jump
back” to 0.
Note: this is a method of type void. Such methods do not return
any value, which means that you don’t have to write a return
statement.

Run in
JShell:

AnimatedPacman.animation();

Output: This should open a window showing the pacman opening and
closing its mouth.

 Composition in Java Lab 7

 Page 15 of 21 LuCE Lugano Computing Education

Research Lab

E. Animated Pacman with IO.interact
Now you will reproduce the same animation using a more powerful API. In fact,
IO.animate internally uses this API. It allows to animate, but also to interact.

Task E1
Class: AnimatedPacman
Task: Implement the method interaction:

public static void interaction()

This method should just call IO.interact with one argument: the initial
mouth angle (of type int or Integer). Method IO.interact returns an
object of type Interaction.

Interaction is a class that implements what's known in Software
Engineering as a "fluent API" or "fluent interface". It has several
instance methods you can call on Interaction objects. You can call
them in a "chain" of method calls, like this:

IO.interact(0).withXxx(…).withYyy(…).withZzz(…)…

Each with… method returns an Interaction object, so you can call
another method on the object. You end the chain of methods by calling
method run(). That run call causes the interaction, which you
configured with all the with… calls, to execute.

Use the following with… calls to configure the interaction:

- withRenderer(…) – pass a function object that will be called each
time the animation should be rendered. The function object
should have type Function1<Integer,Graphic>. You could e.g.,
pass AnimatedPacman::pacman.

- withTickHandler(…) – pass a function object that will be called
at each timer tick. This object should have type
Function1<Integer, Integer>. It should return a new mouth
angle given the passed mouth angle. It could e.g., simply return
an angle that's, say, 10 degrees larger than the parameter value,
and that is 0 if the parameter value is larger than 180 degrees.

- withMsBetweenTicks(…) – pass how many milliseconds to wait
between each tick of the animation

Configure your Interaction object so it behaves like IO.animate did in
Exercise D Task 2.

Run in
JShell:

AnimatedPacman.interaction();

Output: This should open a window with the title "JTamaro Interaction"
showing the pacman opening and closing its mouth.

 Composition in Java Lab 7

 Page 16 of 21 LuCE Lugano Computing Education

Research Lab

 Composition in Java Lab 7

 Page 17 of 21 LuCE Lugano Computing Education

Research Lab

F. Interactive Pacman Application with IO.interact
Now we will develop a simple but complete interactive application. We want the
arrow keys on our keyboard to turn the Pacman into the corresponding direction,
and we want the mouth of the Pacman to open and close with each timer tick.
We will re–use this code in a future lab where we’ll implement a playable Pacman
game.

When developing any interactive application, it is best practice to split the program
into two separate parts: the model and the user interface.

Task F1
Class: PacmanState
Task: It is a good strategy to first develop the model. What exactly is the

information that can change during the interaction?

- How much the mouth is open (modeled as an angle,
mouthAngle)

- The direction towards which the pacman is facing (also
modeled as an angle, rotation)

Let's create a record class PacmanState that implements this model.

Add two components to the record class (one named mouthAngle, of
type int, another named rotation, of type int).

Then add two instance methods, which allow us to create a new
PacmanState with a new mouth angle, or with a new rotation:

public PacmanState withMouthAngle(int newMouthAngle)
public PacmanState withRotation(int newRotation)

Run in
JShell:

new PacmanState(10, 0)

Output: ==> PacmanState[mouthAngle=10, rotation=0]
Run in
JShell:

new PacmanState(10, 0).withMouthAngle(50)

Output: ==> PacmanState[mouthAngle=50, rotation=0]
Run in
JShell:

new PacmanState(10, 0).withRotation(90)

Output: ==> PacmanState[mouthAngle=10, rotation=90]

Task F2
Class: PacmanStateTest
Task: Write unit tests for the methods of the PacmanState record class in the

appropriate file (src/tests/java/lab/PacmanState.java).

Tests: The written tests should pass

 Composition in Java Lab 7

 Page 18 of 21 LuCE Lugano Computing Education

Research Lab

Now that we have a working model of our interaction, we need to “connect” the
model with the user interface (UI). This consists of two “connections”:

- View: Model -> UI
Map from model information to UI output (in this case, JTamaro graphics)

- Controller: UI -> Model
Map from UI input (mouse, keyboard, timers) to the model

This kind of architecture is common for interactive applications. It's known as the
"model-view-controller" pattern. You will find it in some form or another in pretty
much every framework for GUI, mobile, or web applications.

The view defines how to represent the information from the model in the user
interface. For us, the view is implemented as a method that renders the model into
a JTamaro Graphic.

The controller is how to deal with user (and other) external events. The controller
usually updates the model. The controller parts are often also known as "event
handlers", "observers", "callbacks", or "listeners". For us, the controllers are
implemented as methods that produce a new model.

Task F3
Class: InteractivePacman
Task: Let's do a clean design and separate the different aspects into different

methods. First, let's implement a method for rendering the view:

public static Graphic render(PacmanState state)

This method should produce a pacman that is rotated by the given
rotation angle and that has the mouth open as much as specified by the
mouth angle.

Run in
JShell:

show(InteractivePacman.render(new PacmanState(10, 20)));

Output:

 Composition in Java Lab 7

 Page 19 of 21 LuCE Lugano Computing Education

Research Lab

Task F4
Class: InteractivePacman
Task: Now, let's implement a method that handles timer ticks by opening

the mouth a bit (by 10 degrees), or closing it completely (when we
exceed the maximum mouth angle of 180 degrees):

public static PacmanState onTick(PacmanState before)

In your implementation, call PacmanState.withMouthAngle.

Run in
JShell:

InteractivePacman.onTick(new PacmanState(10, 20))

Output: ==> PacmanState[mouthAngle=20, rotation=20]
Run in
JShell:

InteractivePacman.onTick(new PacmanState(180, 20))

Output: ==> PacmanState[mouthAngle=0, rotation=20]
Tests Test your implementation by running the tests provided in the

InteractivePacmanPropertiesTest class.

 Composition in Java Lab 7

 Page 20 of 21 LuCE Lugano Computing Education

Research Lab

Task F5
Class: InteractivePacman
Task: Now, let's implement a method that handles keyboard key releases

by the user by rotating the pacman in the direction of the arrow
key:

public static PacmanState onKeyRelease(
 PacmanState before, KeyboardKey key)

In your implementation, call PacmanState.withRotation. To
determine whether an arrow key was (pressed and then) released,
and which key it was, compare key.getCode() with one of the
constants using the == operator:

• KeyboardKey.RIGHT
• KeyboardKey.UP
• KeyboardKey.LEFT
• KeyboardKey.DOWN

Note: do not change the rotation unless the released key is one of
those listed above.

Run in
JShell:

InteractivePacman.onKeyRelease(
new PacmanState(10, 20),
new KeyboardKey(KeyboardKey.UP)

).rotation()
Output: ==> 90
Run in
JShell:

InteractivePacman.onKeyRelease(
new PacmanState(10, 20),
new KeyboardKey(KeyboardKey.DOWN)

).rotation()
Output: ==> 270
Tests Test your implementation by running the tests provided in the

InteractivePacmanPropertiesTest class.

 Composition in Java Lab 7

 Page 21 of 21 LuCE Lugano Computing Education

Research Lab

Task F6
Class: InteractivePacman
Task: Now we have a model, a view, and controllers. We just have to wire all

of them up. To do this, implement the interaction method:

public static void interaction()

In your implementation, call IO.interact(new PacmanState(0, 0))

On the returned Interaction object call:

• withRenderer
• withTickHandler
• withKeyReleaseHandler
• run

Pass appropriate arguments to each with… method (most arguments
should be method references of the view and controller methods you
just implemented).

Recall: this is a method of type void. Such methods do not return any
value, which means that you don’t have to write a return statement.

Run in
JShell:

InteractivePacman.interaction();

Output: This should open up a window with the title "JTamaro Interaction"
showing the pacman opening and closing its mouth. You should be
able to control the direction the pacman is facing using the four arrow
keys on your keyboard.

