
 Composition in Java Lab 8

 Page 1 of 21 LuCE Lugano Computing Education

Research Lab

Photo by Marvin Meyer on Unsplash

Lab 8
Data Science (Fancy Bar Chart) • Pacman Game (First Part)

 Composition in Java Lab 8

 Page 2 of 21 LuCE Lugano Computing Education

Research Lab

Copy Your Lab 7 Toolbelt
In Lab 7 you added methods to your Toolbelt class. The Toolbelt class included in
the Lab 8 starter repository is missing these methods. Please copy the methods of
your Lab 7 Toolbelt class into the Lab 8 Toolbelt class, so that you can continue to
use the methods you develop (and add new ones you might need in the future).

 Composition in Java Lab 8

 Page 3 of 21 LuCE Lugano Computing Education

Research Lab

A. Data Science (Fancy Bar Chart)
In a previous lab we developed a simple bar char. Let’s be more ambitious and
develop FancyBarChart, a more powerful class that can render bars in different
colors, add labels below bars, and add labels for the range (minimum and maximum)
on the y-axis.

Here is an example bar chart based on the Swiss Parliamentary Groups data:

We will use our FancyBarChart class on two data sets, which are available in classes
Lugano and SwissParliament.

Task A1
Class: QuickSort
Task: We will want to sort data, so first copy the sort method from the

worksheet into the QuickSort class.

Run in
JShell:

println(
QuickSort.sort(
 (a, b) -> a <= b,
 of(5, 1, 2, 4, 3)
)

)
Output: 1

2
3
4
5

Tests: All tests in lab.barchart.QuickSortTest should pass

 Composition in Java Lab 8

 Page 4 of 21 LuCE Lugano Computing Education

Research Lab

Let's decompose the graphic, so that we can create a bunch of functions that create
the different parts.

Note that there is a gap between the yAxis and the chartArea, and an equally wide
gap between the xAxis and the chartArea. Those gaps have the same width as the
gap between bars.

The chartArea is like the one you have implemented in the past. The only difference
is that the bars also have different colors.

The yAxis is rather simple: it has the same height as the chartArea, and it has a text
at its top and a text aligned at its bottom.

The xAxis consists of rotated texts, centered below each bar. It may make sense to
create rectangles with the same width as one bar, and then center the rotated text
within those rectangles.

While implementing your FancyBarChart, use lambdas wherever it's useful.

chartArea

yAxis

xAxis

 Composition in Java Lab 8

 Page 5 of 21 LuCE Lugano Computing Education

Research Lab

Task A2
Class: FancyBarChart
Task: Implement a method to draw the chart area.

public static Graphic chartArea(
 Sequence<Double> values,
 Sequence<Color> colors,
 double width,
 double height
)

Hint: You can zip the two sequences and do a single reduction.

Assert acceptable parameter values.

Run in
JShell:

show(
FancyBarChart.chartArea(
 of(1.0, 2.0, 0.5),
 of(RED, GREEN, BLUE),
 200,
 200
)

)
Output:

 Composition in Java Lab 8

 Page 6 of 21 LuCE Lugano Computing Education

Research Lab

Task A3
Class: FancyBarChart
Task: Implement a method to draw the x-axis.

public static Graphic xAxis(
Sequence<String> labelStrings,
double width,
double fontSize

)

Use the given font size for the texts.

Assert acceptable parameter values.

Run in
JShell:

show(
FancyBarChart.xAxis(
 of("red", "green", "blue"),
 200,
 20
)

);
Output:

 Composition in Java Lab 8

 Page 7 of 21 LuCE Lugano Computing Education

Research Lab

Task A4
Class: FancyBarChart
Task: Implement a method to draw the y-axis.

public static Graphic yAxis(
Sequence<Double> values,
double height,
double fontSize

)

Use the given font size for the texts.

Assert acceptable parameter values.

Run in
JShell:

show(
FancyBarChart.yAxis(
 of(1.0, 2.0, 0.5),
 200,
 20
)

)
Output:

 Composition in Java Lab 8

 Page 8 of 21 LuCE Lugano Computing Education

Research Lab

Task A5
Class: FancyBarChart
Task: Implement a method to compose the entire bar chart.

public static Graphic barChart(
 Sequence<Double> values,
 Sequence<String> labels,
 Sequence<Color> colors,
 double areaWidth,
 double areaHeight,
 double fontSize
)

Call chartArea, xAxis, and yAxis, and inject gaps between the different
parts.

Run in
JShell:

show(
FancyBarChart.barChart(
 of(1.0, 2.0, 0.5),
 of("red", "green", "blue"),
 of(RED, GREEN, BLUE),
 200,
 200,
 20
)

)
Output:

 Composition in Java Lab 8

 Page 9 of 21 LuCE Lugano Computing Education

Research Lab

Task A6
Class: FancyBarChart
Task: Implement a convenience method to compose a bar chart from a

sequence of some type of records. Instead of taking three sequences
(values, labels, colors), this method just takes one sequence (e.g., a
sequence of Neighborhoods), and it takes three functions that map from
elements of the given sequence to a sequence of values (bar heights),
a sequence of strings (bar labels), and a sequence of colors (bar colors).

public static <T> Graphic barChartFromRecords(
 Sequence<T> items,
 Function1<T,Double> itemValue,
 Function1<T,String> itemLabel,
 Function1<T,Color> itemColor,
 double width,
 double height,
 double fontSize
)

Assert acceptable parameter values.

Run in
JShell:

show(
 FancyBarChart.barChartFromRecords(
 SwissParliament.parliamentaryGroups(),
 g -> (double)g.members(),
 g -> g.acronym(),
 g -> BLACK,
 400,
 200,
 20
)
)

Output:

 Composition in Java Lab 8

 Page 10 of 21 LuCE Lugano Computing Education

Research Lab

Task A7

Class: ExampleCharts
Task: Write a method that creates a bar chart, like the one just before, but

with bars colored by the parliamentary group's colors.

public static Graphic swissParliamentSeatDistribution()

The SwissParliament class contains a method acronymToColor that
helps you to map from an acronym of a parliamentary group to the
color that is usually used to represent that group.

Run in
JShell:

show(ExampleCharts.swissParliamentSeatDistribution())

Output:

 Composition in Java Lab 8

 Page 11 of 21 LuCE Lugano Computing Education

Research Lab

Task A8

Class: ExampleCharts
Task: Write a method that creates a bar chart of Lugano neighborhoods, in

alphabetical order, showing their areas.

public static Graphic neighborhoodAreasByName()

Use method luganoNeighborhoods in class Lugano.

Run in
JShell:

show(ExampleCharts.neighborhoodAreasByName());

Output:

Task A9
Class: ExampleCharts
Task: Write a method that creates a bar chart of Lugano neighborhoods, in

increasing order of their area, showing their areas.

public static Graphic neighborhoodAreasByArea()

Use method luganoNeighborhoods in class Lugano.

Run in
JShell:

show(ExampleCharts.neighborhoodAreasByArea());

Output:

 Composition in Java Lab 8

 Page 12 of 21 LuCE Lugano Computing Education

Research Lab

Task A10
Class: ExampleCharts
Task: Write a method that creates a bar chart of Lugano neighborhoods, in

increasing order of their population densities. The height of the bar
should correspond to the population density (population / area), and
the saturation of the bar should correspond to the population.

public static Graphic neighborhoodPopulationDensities()

Use hsv to create the color, with a hue of 0, a value of 0.8, and a
saturation that corresponds to the population (0 for a population of
0, 1.0 for a population that corresponds to the maximum population
across neighborhoods).

Run in
JShell:

show(ExampleCharts.neighborhoodPopulationDensities());

Output:

Isn't this pretty darn amazing?

You built this from scratch. All you had was a very limited graphics library.
Everything was composed by you!

Given your fancy bar chart method, you can now throw together insightful
visualizations of any sequence of records with just a few lambdas.

All you need is lambda.

 Composition in Java Lab 8

 Page 13 of 21 LuCE Lugano Computing Education

Research Lab

B. Pacman Game (First Part)

In an earlier lab, we decomposed the maze of a Pacman game and rendered the
different tiles (e.g., a pill, a straight wall, a corner wall, the pacman itself).
We then manually combined the graphics to create a simple small maze.

In this lab, we want to programmatically draw a realistic and configurable maze. We
will then implement the necessary functionalities so that our pacman can move
around across tiles. Our result will look like this:

In a future lab, we’ll return on what we accomplished here to complete our game
(e.g., adding a ghost, constraining the pacman so that it cannot step on walls, and
detecting the collision between the pacman and the ghost).

 Composition in Java Lab 8

 Page 14 of 21 LuCE Lugano Computing Education

Research Lab

Task B1
Class: Main
Task: We describe the layout of our maze as a string of characters, where

each one resembles one of the kinds of tiles. For example, ┌
corresponds to an upper-right wall corner, ─ to a straight horizontal
wall, and 0 to a power pill.

With this encoding, it’s relatively straightforward to write the
configuration of a maze in a file. Each line corresponds to a row of
our maze, and each character corresponds to a column in that row
(i.e., a tile).

Start by implementing readMazeDescriptor in class Main. It
takes a Path as an argument, reads the file and returns a grid (i.e.,
a sequence of sequence) of Characters.

Hint: You can read the content of a file as a string by calling
IO.readFile(Path).

Hint: You can split a string at every “new line character” and get back
a sequence of strings (one per line) with ofStringLines.

Hint: You can split a string at every character and get back a
sequence of characters (one per line) with ofStringCharacters.

You may find it convenient to use map.

Run in
JShell:

print(first(Main.readMazeDescriptor(Path.of("level.txt"))))

Result: ┌────────────┐┌────────────┐

 Composition in Java Lab 8

 Page 15 of 21 LuCE Lugano Computing Education

Research Lab

Task B2

Class: Maze
Task: Complete the implementation of the method charToTileGraphic in

Maze that renders one character into the appropriate graphic.

Be Lazy (aka: Reuse Code). The implementation should call the
methods you already implemented in Lab 3 Task F. Each square tile
should have side length tileSize (a parameter of
charToTileGraphic).

Then, complete the method render that transforms a description of
an entire maze (a grid of characters) into the entire graphic.

Run in
JShell:

show(Maze.render(20.0,
Main.readMazeDescriptor(Path.of("level.txt"))))

Output:

 Composition in Java Lab 8

 Page 16 of 21 LuCE Lugano Computing Education

Research Lab

Task B3

Class: Maze
Task: A maze is modeled as a record with two components (numColumns

and numRows) that describe the number of tiles in each dimension.

The position of the pacman on the maze is modeled as a Position.
Position is a record with two components, column and row.

When the pacman will move, we want to confine it within the
boundaries of our maze.

Implement a predicate isWithinBounds that takes a position and
checks whether it fits within the boundaries of the maze.

Then, inside the method play of the class Main, instantiate a Maze
object providing the correct dimensions of the maze. Inspect the
grid of characters contained in mazeDescriptor.

Run in
JShell:

new Maze(10, 10).isWithinBounds(new Position(2, 3))

Output: ==> true
Run in
JShell:

new Maze(16, 18).isWithinBounds(new Position(15, 52))

Output: ==> false

Task B4

Class: Heading
Task: As we already saw in previous labs, a pacman has a heading: a direction

towards which it faces.
Now we want an interactive game, and therefore our pacman has to
move. But to do that properly, we need to take into account its heading.
The next position of the pacman depends indeed on its current heading.

Instead of implementing this in a method with several nested
conditional expressions, we can exploit the beauty of object-oriented
programming and take advantage of dynamic dispatch.

To do this, let’s model each heading (north, south, west, east) as a
record class implementing a common interface, Heading.

What can a heading tell us? We need two capabilities from a specific
heading: being able to know the angle of rotation to appropriately
render the pacman and being able to compute the next position.

 Composition in Java Lab 8

 Page 17 of 21 LuCE Lugano Computing Education

Research Lab

Create four record classes named North, South, West, East that
implement Heading and its two methods.

Run in
JShell

new lab.pacman.game.heading.North().toRotation()

Output: 90.0
Run in
Jshell

new lab.pacman.game.heading.South().nextPosition(new Position(1, 1))

Output: ==> Position[column=1, row=2]

Task B5

Class: HeadingFactory
Task: We now need to map from a key pressed on the keyboard to one of our

headings, so that we will be able to change the pacman’s heading once
everything is properly wired.

Complete the fromKeyCode method and instantiate the correct heading
in each case using the record classes created in the previous task.

Run in
JShell:

HeadingsFactory.fromKeyCode(38, new lab.pacman.game.heading.South())

Output: ==> North[]

Task B6

Class: Configuration, Game
Task: We now are ready to model our protagonist, pacman.

Define an INITIAL_PACMAN constant of type Pacman in the Configuration
class as follows:

- Heading west
- At position 0, 0
- Mouth angle set to 30

Use this constant in the Game.initialGame method to define the
default state of the Pacman when the game starts.

Run in
JShell:

Configuration.INITIAL_PACMAN

Output: ==> Pacman[heading=West[], position=Position[column=0, row=0],
 mouthAngle=30]

 Composition in Java Lab 8

 Page 18 of 21 LuCE Lugano Computing Education

Research Lab

Task B7

Class: Pacman
Task: Implement the turn method, which should create a new pacman that

is the same as the current one but with an updated heading. This
method will get called when we press a key on the keyboard.

The method should have this signature:

Pacman turn(Heading newHeading)

Run in
JShell:

new Pacman(new lab.pacman.game.heading.East(),
 new Position(2, 2),
 30).turn(new lab.pacman.game.heading.West())

Output: ==> Pacman[heading=West[], position=Position[column=2, row=2],
 mouthAngle=30]

Task B8

Class: Pacman
Task: Implement the evolve method, which defines the core behavior of the

pacman at each step of our game (or, if you prefer, each time our
“world” evolves).

There are two key functionalities:

- The pacman tries to move one step in the direction of its
current heading

- The pacman assumes a new mouth angle

Let’s implement each functionality in its own little helper method.

For the first one, define a method

Position nextPosition(Maze maze)

To implement it, use the method nextPosition on the pacman’s heading
to compute a tentative new position. You should then make sure that
the position fits within the boundary of the maze (remember the maze’s
isWithinBounds method we implemented earlier).
If it fits, the “next position” is the tentative one. Otherwise, the
pacman does not move.

For the second functionality, define a parameterless method
nextMouthAngle that returns an int. Each time the mouth opens 6
degrees more, until it reaches 60 degrees. At that point, it closes
completely (0 degrees).

 Composition in Java Lab 8

 Page 19 of 21 LuCE Lugano Computing Education

Research Lab

Finally, define and implement

Pacman evolve(Maze maze)

that creates a new pacman with the updated position and mouth angle,
as returned by the two auxiliary methods.

Run in
JShell:

new Pacman(new lab.pacman.game.heading.East(),
 new Position(2, 2),
 30).evolve(new Maze(10, 10))

Output: ==> Pacman[heading=East[], position=Position[column=3, row=2],
 mouthAngle=36]

Task B9

Class: Pacman
Task: Define and implement the render method:

Graphic render(double tileSize)

You can reuse the graphic for the pacman you already produced in the
previous lab, but make sure its width is exactly the size of a tile (the
parameter). Also, take into account the mouthAngle.

Run in
JShell:

show(new Pacman(new lab.pacman.game.heading.West(),
 new Position(0, 0),
 30).render(100.0))

Output:

 Composition in Java Lab 8

 Page 20 of 21 LuCE Lugano Computing Education

Research Lab

Task B10

Class: Game
Task: We now focus on the Game class. It contains all the information about

the state of the game.

Implement the turnPacman method, which returns an updated game
instance with a pacman that is facing towards the heading provided as
a parameter.

Be smart: this method should delegate the work of turning the pacman
to the Pacman object (indeed, earlier we implemented Pacman.turn).

Run in
JShell:

new Game(
 Configuration.INITIAL_PACMAN,
 new Maze(8, 8)
).turnPacman(new lab.pacman.game.heading.South())

Output: ==> Game[pacman=Pacman[heading=South[],
 position=Position[column=0, row=0],
 mouthAngle=30],
 maze=Maze[numColumns=8, numRows=8]]

Task B11

Class: Game
Task: Implement the evolve method of Game class, which acts on the entire

game and “evolves” it one step.

For now, that just means evolving the pacman. In a future lab, here we
will also evolve all the other sprites, such as ghosts.

Tests: All tests in lab.pacman.game.GameTest should pass

 Composition in Java Lab 8

 Page 21 of 21 LuCE Lugano Computing Education

Research Lab

Task B12

Class: Main
Task: Implement the interaction at the end of the body of the play method.

Call IO.interact with one argument: the initial Game object, which you
may obtain by invoking the Game.initialGame method.
Then, using the fluent API we’ve seen in the previous lab, configure the
interaction using the following with… methods:

- withBackground(…) – pass the background Maze graphic which
you may produce with the Maze.render method.

- withRenderer(…) – pass a lambda that, given a game instance,
renders it using the Game.render method.

- withKeyPressHandler(…) – pass a method reference to the
Main.onKeyPress method.

- withTickHandler(…) – which evolves the given Game instance
(method Game.evolve).

Finally, conclude the chain of method invocations with .run() to
execute your interaction.

Now, call the Main.play method from JShell to run the pacman game!

At each step, the library will call the onTick event handler, which in
turn evolves the entire Game using the method you implemented.

The maze is rendered once at the beginning, and then at each step the
render method is invoked on your game instance.

Finally, a keyboard handler reacts to key presses, producing a new
heading for the pacman and updating the game.

If everything has been implemented correctly, you should be able to
control the direction pacman moves using the directional keys on your
keyboard. The pacman should stay within the boundaries of our world,
but it still doesn’t meaningfully interact with the maze (e.g., it goes
over the walls).

The maze description is contained in a file named level.txt. Try to
change its content and verify that your fantasy gets reflected in the
rendered maze!

Run in
JShell:

Main.play(20.0, "level.txt")

Tests: All tests should pass

