
 Composition in Java Lab 9

 Page 1 of 17 LuCE Lugano Computing Education

Research Lab

Photo by Marvin Meyer on Unsplash

Lab 9
Memory Diagram to Code • CFG to Code • Random Access • Reductions with

Loops • Mappings with Loops • Filterings with Loops • Pacman Game
(Finish)

 Composition in Java Lab 9

 Page 2 of 17 LuCE Lugano Computing Education

Research Lab

A. Memory Diagram to Code
We usually draw memory diagrams to explain code.

Let’s flip things around, and write the code that, when executed, will lead to a
given memory state (shown in the given memory diagram).

Task A1
Class: lab.memory.MysteryMemory and others you need to create
Task: Here is a memory diagram involving the stack and the heap:

Implement method int magic() so it leads to the given memory
diagram when called, just before it returns.

Zero

9Succ

MysteryMemory.magic()

Num

zero

Num

one

Num

two

Tree

tree

Succ

Leaf

s
1

Leaf

2

Leaf

Internal

4

Internal

 Composition in Java Lab 9

 Page 3 of 17 LuCE Lugano Computing Education

Research Lab

B. CFG to Code
This week we learned about control-flow graphs (CFGs).

A method that is available as Java Bytecode (or in assembly and machine code in
general) can easily be translated to a control-flow graph: branch instructions turn
into diamonds with multiple outgoing edges, other instructions turn into
rectangles with one outgoing edge to the next instruction.

However, given a control-flow graph, coming up with a corresponding structured
program (using sequences of statements, conditional statements, and loop
statements) can be more challenging. This is what a “decompiler” does: it takes
compiled code (e.g., Java Bytecode) and produces source code, by producing the
CFG and then turning the CFG into meaningful source code.

Let’s play “decompiler”!

Task B1
Class: lab.cfg.MysteryCFG
Task:

Implement the following method that corresponds to the above
CFG. Use conditional statements and loops.

public static int magic(Sequence<Integer> s, int x)

Run in JShell: MysteryCFG.magic(of(2), 2)
Result: ==> 0 -- for this to succeed, first implement Util.get in Task C1

 Composition in Java Lab 9

 Page 4 of 17 LuCE Lugano Computing Education

Research Lab

Repetitive Computations with Loops
So far you implemented reductions, mappings, and filterings using recursion,
using higher-order functions with method references, and using higher-order
functions with lambdas. Now you will do so using for-each-loops, while-loops,
and for-loops.

C. Random Access
Before implementing our reductions, mappings, and filterings, let’s write a
method that will come in handy when working with loops that use indices.
Specifically, write a get method for sequences, so we can access an element of a
sequence given an integer index.

Task C1
Class: lab.loops.Util
Task: Implement the following method in the Util class:

public static <E> E get(int index, Sequence<E> sequence)

Note: Use recursion.

Assert that the index is in range (that it indeed refers to an existing
element in the given sequence).

Run in
JShell:

Util.get(0, of(1.0, 2.0, 3.0))

Result: ==> 1.0
Run in
JShell:

Util.get(0, empty())

Result: AssertionError: index out of bounds

Task C2
Class: lab.loops.Util
Task: Add the following method to the Util class:

public static <E> Sequence<E> reverse(Sequence<E> sequence)

Note: Use a while-loop, with while (!isEmpty(sequence)) ….

You may need this method in some of the subsequent tasks.

Run in
JShell:

println(Util.reverse(of(1, 2, 3)))

Output: 3
2
1

 Composition in Java Lab 9

 Page 5 of 17 LuCE Lugano Computing Education

Research Lab

D. Reductions with Loops

Task D1
Class: lab.loops.Reductions
Task: As a baseline, implement the following sum method using recursion,

like we did in the past:

 public static double sum(Sequence<Double> values)

Implement the following min method using a while-loop, without using
an index.

 public static double min(Sequence<Double> values)

Implement the following max method using a while-loop, using an
index, Toolbelt.length, and the Util.get method you implemented
before:

 public static double max(Sequence<Double> values)

Implement the following and method using a for-each-loop, without
using an index:

 public static boolean and(Sequence<Boolean> values)

Implement the following or method using a for-loop, using an index,
Toolbelt.length, and the Util.get method you implemented before:

 public static boolean or(Sequence<Boolean> values)

For comparison, implement the following join method using a reduce
and a lambda:

 public static String join(Sequence<String> values)

Note: use Double.POSITIVE_INFINITY	and Double.NEGATIVE_INFINITY	as
neutral elements for min	and max.

Run in
JShell:

Reductions.sum(of(1.0, 2.0, 3.0))

Result: ==> 6.0
Run in
JShell:

Reductions.sum(empty())

Result: ==> 0.0
Run in
JShell:

Reductions.min(of(1.0, 2.0, 3.0))

Result: ==> 1.0
Run in
JShell:

Reductions.min(empty())

 Composition in Java Lab 9

 Page 6 of 17 LuCE Lugano Computing Education

Research Lab

Result: ==> Infinity
Run in
JShell:

Reductions.max(of(1.0, 2.0, 3.0))

Result: ==> 3.0
Run in
JShell:

Reductions.max(empty())

Result: ==> -Infinity
Run in
JShell:

Reductions.and(of(true, false, true))

Result: ==> false
Run in
JShell:

Reductions.and(empty())

Result: ==> true
Run in
JShell:

Reductions.or(of(true, false, true))

Result: ==> true
Run in
JShell:

Reductions.or(empty())

Result: ==> false
Run in
JShell:

Reductions.join(of("He", "ll", "o"))

Result: ==> "Hello"
Run in
JShell:

Reductions.join(empty())

Result: ==> ""

 Composition in Java Lab 9

 Page 7 of 17 LuCE Lugano Computing Education

Research Lab

E. Mappings with Loops
Task E1
Class: lab.loops.Mappings
Task: The following mappings simply convert all elements from one type to

another type.

Hint: If you get the result in the reverse order, as a first step in your
method call Util.reverse and then operate on the reversed sequence.

As a baseline, implement the following ds2is method using recursion,
like we did in the past:

 public static Sequence<Integer> ds2is(Sequence<Double> vals)

Implement the following ss2is method using a while-loop, without
using an index.

 public static Sequence<Integer> ss2is(Sequence<String> vals)

Implement the following is2ds method using a while-loop, using an
index, Toolbelt.length, and the Util.get method you implemented
before:

 public static Sequence<Double> is2ds(Sequence<Integer> vals)

Implement the following ss2ds method using a for-each-loop, without
using an index:

 public static Sequence<Double> ss2ds(Sequence<String> vals)

Implement the following is2ss method using a for-loop, using an
index, Toolbelt.length, and the Util.get method you implemented
before:

 public static Sequence<String> is2ss(Sequence<Integer> vals)

For comparison, implement the following ds2ss method using a map
and a lambda:

 public static Sequence<String> ds2ss(Sequence<Double> vals)

Run in
JShell:

print(
 Mappings.ds2is(of(0.1, 3.14, 0.2))
)

Output: 030
Run in
JShell:

print(
 Mappings.ss2is(of("1", "3", "2"))
)

Output: 132

 Composition in Java Lab 9

 Page 8 of 17 LuCE Lugano Computing Education

Research Lab

Run in
JShell:

print(
 Mappings.is2ds(of(1, 3, 2))
)

Output: 1.03.02.0
Run in
JShell:

print(
 Mappings.ss2ds(of("0.1", "3.14", "0.2"))
)

Output: 0.13.140.2
Run in
JShell:

print(
 Mappings.is2ss(of(1, 3, 2))
)

Output: 132
Run in
JShell:

print(
 Mappings.ds2ss(of(0.1, 3.14, 0.2))
)

Output: 0.13.140.2

 Composition in Java Lab 9

 Page 9 of 17 LuCE Lugano Computing Education

Research Lab

F. Filterings with Loops

Task F1
Class: lab.loops.Filterings
Task: The following methods will work with the given the Person class.

As a baseline, implement the following filterOlderThan method using
recursion, like we did in the past:

 public static Sequence<Person> filterOlderThan(
 int age, Sequence<Person> ps)

Implement the following filterByAge method using a while-loop,
without using an index.

 public static Sequence<Person> filterByAge(
 int age, Sequence<Person> ps)

Implement the following filterYoungerThan method using a while-
loop, using an index, Toolbelt.length, and the Util.get method you
implemented before:

 public static Sequence<Person> filterYoungerThan(
 int age, Sequence<Person> ps)

Implement the following filterByLastName method using a for-each-
loop, without using an index:

 public static Sequence<Person> filterByLastName(
 String lastName, Sequence<Person> ps)

Implement the following filterByFirstName method using a for-loop,
using an index, Toolbelt.length, and the Util.get method you
implemented before:

 public static Sequence<Person> filterByFirstName(
 String firstName, Sequence<Person> ps)

For comparison, implement the following filterByAgeRange method
using a filter and a lambda:

 public static Sequence<Person> filterByAgeRange(
 int youngestInclusive, int oldestInclusive, Sequence<Person> ps)

 Composition in Java Lab 9

 Page 10 of 17 LuCE Lugano Computing Education

Research Lab

Run in
JShell:

println(
 Filterings.filterOlderThan(40,
 of(
 new Person("Jim", "Halpert", 31),
 new Person("James Morgan", "McGill", 48),
 new Person("Marquis", "Warren", 74)
)
)
)

Output: Person[firstName=James Morgan, lastName=McGill, age=48]
Person[firstName=Marquis, lastName=Warren, age=74]

Run in
JShell:

println(
 Filterings.filterByAge(48,
 of(
 new Person("Jim", "Halpert", 31),
 new Person("James Morgan", "McGill", 48),
 new Person("Jimmy", "McGill", 48),
 new Person("Marquis", "Warren", 74)
)
)
)

Output: Person[firstName=James Morgan, lastName=McGill, age=48]
Person[firstName=Jimmy, lastName=McGill, age=48]

Run in
JShell:

println(
 Filterings.filterYoungerThan(74,
 of(
 new Person("Jim", "Halpert", 31),
 new Person("James Morgan", "McGill", 48),
 new Person("Marquis", "Warren", 74)
)
)
)

Output: Person[firstName=Jim, lastName=Halpert, age=31]
Person[firstName=James Morgan, lastName=McGill, age=48]

Run in
JShell:

println(
 Filterings.filterByLastName("McGill",
 of(
 new Person("Jim", "Halpert", 31),
 new Person("James Morgan", "McGill", 48),
 new Person("Jimmy", "McGill", 48),
 new Person("Marquis", "Warren", 74)
)
)
)

Output: Person[firstName=James Morgan, lastName=McGill, age=48]
Person[firstName=Jimmy, lastName=McGill, age=48]

 Composition in Java Lab 9

 Page 11 of 17 LuCE Lugano Computing Education

Research Lab

Run in
JShell:

println(
 Filterings.filterByFirstName("Jim",
 of(
 new Person("Jim", "Halpert", 31),
 new Person("James Morgan", "McGill", 48),
 new Person("Jimmy", "McGill", 48),
 new Person("Marquis", "Warren", 74)
)
)
)

Output: Person[firstName=Jim, lastName=Halpert, age=31]
Run in
JShell:

println(
 Filterings.filterByAgeRange(31, 48,
 of(
 new Person("Jim", "Halpert", 31),
 new Person("James Morgan", "McGill", 48),
 new Person("Jimmy", "McGill", 48),
 new Person("Marquis", "Warren", 74)
)
)
)

Output: Person[firstName=Jim, lastName=Halpert, age=31]
Person[firstName=James Morgan, lastName=McGill, age=48]
Person[firstName=Jimmy, lastName=McGill, age=48]

 Composition in Java Lab 9

 Page 12 of 17 LuCE Lugano Computing Education

Research Lab

G. Pacman Game (pt.2)

We will now continue the development of the Pacman game from the previous lab.
This second part builds on top of the first part. It’s essential you do it before
attempting these tasks. If you still have not done it, now it is the right moment.

Copy the src/main/java/lab/pacman folder from your lab–08 to lab–09 at the same
path.

Before writing code, make sure to read through the whole task description.

Task G1: Tiles - rendering
Task: The most notable issue with the current implementation of our Pacman

game is that there is no collision detection: our Pacman can move over
the walls! To add the logic to determine whether we can step over or
collide, tiles can no longer be a simple Graphic, but instead they need
to become entities (objects).

To do this, we need to perform some refactoring of the code we wrote
last time: each tile has some shared behavior, and that’s exactly where
subtyping is useful.

This means that you have to define an interface and a number of record
classes that implement such interface. In order to preserve the
functionalities that were already implemented, we begin by having our
new type hierarchy be able to produce the Graphic of a tile. Later we will
use the hierarchy to build the collision detection feature.

Right now, in the Maze class, there is a static charToTileGraphic method,
which produces a Graphic. That method takes a character and uses
chained conditional operators to choose which method should be
invoked to render the individual tile. With dynamic dispatch, it will
become possible to simply invoke the same method on each different
tile rather than having a chain of conditional expressions to decide
which graphic to produce. We will instead use a similar chain of
conditionals later in this task to construct the different tile instances.

This time, it’s up to you to decide how to name the interface for this type
hierarchy, the name of its method (that produces the Graphic of the tile),
the number of record classes you need to implement, their components
and names.

Implement an interface for a tile in the maze, and record classes that
allow you to represent the different tiles and use them to simplify the
Maze.render method by using dynamic dispatch.

 Composition in Java Lab 9

 Page 13 of 17 LuCE Lugano Computing Education

Research Lab

Hint: when implementing a hierarchy of classes and interface, it’s a good
practice to put them in their own package (e.g., lab.pacman.game.tile)
so that the code is more isolated and easier to re–use.

Once you have declared the interface and implemented all the classes,
you need to instantiate them. To do that, you need a “factory”. A factory
class is used to create instances of a given interface depending on some
input value. This avoids exposing the concrete classes to the clients, only
the interface. This is very useful when developing bigger projects
(especially when working in teams) as it allows you to have a clearer
separation between your public API, which other people will rely on, and
the implementation details of such API.
Similarly to the lab.pacman.game.heading.HeadingsFactory class, create
a factory class for your tiles with a method that given a char, instantiates
the appropriate class.

You will then use the newly created factory class in the
lab.pacman.Main.readMazeDescriptor method to obtain, rather than an
instance of Sequence<Sequence<Character>> an instance of
Sequence<Sequence<NameOfYourNewTileInterface>>.

Finally, now that you have concrete tile objects, it’s a good idea to
store them as components in the Maze class, so we will be able to do
more things with them in the next tasks. This also implies converting
the Maze.render method from a static method to an instance method
now that it will no longer receive an argument of type
Sequence<Sequence<Character>>, but rather will use the new tiles
component of your maze.

Result: Once you have completed this task, you should be able to run the game
again and notice no difference when playing the game. This is what a
refactoring is: improving the quality of your code while preserving all the
functionalities that are exposed to the user. And we paved the way for
implementing the collision detection.

Task G2
Task: It is now time to implement a really important feature for our pacman

game: maze collision detection: this way your pacman will be
constrained to move within the maze.

A simple way to implement this is by checking whether pacman can step
on a given tile or not. Pacman can step on the “floor” tiles; it should not
be able to step over walls.

Given that we implemented an interface that represent the different tiles
in the maze, we can put to good use the refactoring we did in the
previous task to define which tiles pacman is allowed to step on. Then,

 Composition in Java Lab 9

 Page 14 of 17 LuCE Lugano Computing Education

Research Lab

with dynamic dispatch we could simply ask the tile of the position
pacman wants to move towards and see if it allows such movement.

Add a new method to the interface you created in the previous task that
defines whether it’s possible or not to step on such tile.
Then, modify the computation of the next position of the pacman so that
it not only checks whether the next step is within the boundaries of the
maze, but also whether it is landing on a tile that can be stepped on.

Finally, you might want to modify the value of the INITIAL_PACMAN
constant in the Configuration class so that it defaults to a position that
is not a wall (e.g., (26, 13)).

Result: Once you have completed this task, you should be able to run the game
and the movements of pacman should be also constrained by the inner
walls of the maze, not only the outer bounds.

In the upcoming tasks, we’ll continue refactoring the code to introduce new features
and make your code better. Because of this, it is useful to write tests to ensure that
the changes you make don’t introduce regressions (a functionality becoming broken
due to some change that may or may not be directly related to it).

 Composition in Java Lab 9

 Page 15 of 17 LuCE Lugano Computing Education

Research Lab

Task G3
Task: Another important missing component of the game is the Ghost.

Ghost is similar to pacman, but it has different movement logic. Instead
of having its heading controlled by the user through keyboard input, the
ghost follows some algorithmic rule.
To keep the task simple, the evolution of the ghost should be as follows:

• It should always proceed in the direction it’s currently heading.
• When it hits a wall, the heading is changed randomly.

Declare and implement a Ghost class, which has the same functionality
as the Pacman class except for the following methods having different
implementations:

• Ghost.render should render a ghost and not a pacman. This also
means that Ghost does not need a mouth angle component. Can
you think of another render–related component that could be
useful to have instead?

• Ghost should not have a turn method, instead it should compute
the next heading depending on the next position when evolving.

To select a new Heading randomly, you may add (and then use) a new
static method inside the HeadingsFactory class, which takes an instance
of Random as its only parameter (this Random instance could be stored as
a component in the Ghost class). Using the instance method
Random.nextInt with arguments 0,4, you can obtain a random integer in
range [0, 4). Depending on the randomly generated number, return a
different Heading instance between North, South, East and West.

Once you have implemented the Ghost class, create an INITIAL_GHOST
constant value. The ghost should be positioned at Position(11, 11) by
default.

Now add a Ghost component to the Game record class and update all the
calls to the constructor of this class and invoke the evolve method on
the Ghost where appropriate, just like Pacman.

Finally, adapt the Game.render method so that the Ghost is rendered as
well. To do this, add a placeGhost method which takes a Ghost instead of
a Pacman. Use the result of the evaluation of the invocation of place as
the argument of type CartesianWorld for the placeGhost function.

Result: Once you have completed this task, you should be able to run the game.
The ghost should be rendered, and it should move on its own around the
maze. The Pacman’s behavior is unchanged.

 Composition in Java Lab 9

 Page 16 of 17 LuCE Lugano Computing Education

Research Lab

You could now write tests for the newly created Ghost, to ensure that whenever
you’ll change its implementation details in future tasks the behavior remains
consistent.

Task G4
Task: You may have noticed how Pacman and Ghost have some similarities:

they both have several public methods that have the exact same
signature and return type. Can you identify such methods?
Note: also consider the nullary getter methods for the record
components.

The fact that there’s a considerable amount of shared behavior between
conceptually related entities provides a good opportunity to introduce
some more subtyping.
Now declare an interface that defines those shared methods and make
Pacman and Ghost implement it, similarly to what was done during the
lectures with the Circle and Square record classes and the Shape
interface (Workbook 6).

Now look at the code in your Game class: identify and remove some code
duplication by using a shared interface rather than the specific Pacman
and Ghost classes.

Finally, now that you have yet another type hierarchy, it would be a good
idea to move all the classes that belong to it to a sub–package just like
for the tiles and heading type hierarchies.
Move the interface and the two classes and make sure the imports are
correctly updated (this should be done automatically by the IDE for you).

Result: Once you have completed this task, you should be able to run the game
again and play it as before.
This refactoring reduced code duplication. And it would be essential if
we were to have, say, multiple ghosts.

 Composition in Java Lab 9

 Page 17 of 17 LuCE Lugano Computing Education

Research Lab

Task G5
Task: This last task asks you to implement the “losing condition” of the game:

that is, whenever the Ghost eats the Pacman, the player loses, and the
game is reset.

Beware: there are two possible situations in which a game may be
considered lost:

1. Pacman and Ghost are on the same tile (same position);
2. Pacman and Ghost have opposing headings but are beside each

other: in this situation the next Position of the Ghost is equal to
the current Position of the Pacman. The Figure below illustrates
the situation that we want to avoid by implementing this check:

The checks for whether the game is lost should happen during the
evolution of the Game. In case of a loss, the next game should revert to
the initial state of the Game so it may start anew.

Result: Once you have completed this task, you should be able to run the game
and when the ghost eats the pacman, the game should be reset allowing
you to play again as if you just opened the game the first time.

