
 Composition in Java Lab 10

 Page 1 of 24 LuCE Lugano Computing Education

Research Lab

Photo by Marvin Meyer on Unsplash

Lab 10
Mouse Visualizer • Dice Game

 Composition in Java Lab 10

 Page 2 of 24 LuCE Lugano Computing Education

Research Lab

Copy methods from your Lab 9 Toolbelt

In earlier labs you added methods to your Toolbelt class. The Toolbelt class
included in the Lab 10 starter repository is missing these methods. Please add the
methods of your Lab 9 Toolbelt class to the Lab 10 Toolbelt class, so that you can
continue to use the methods you develop (and add new ones you might need in the
future). DO NOT remove the methods that are currently defined in the starter
Toolbelt class, as they are needed across the project.

 Composition in Java Lab 10

 Page 3 of 24 LuCE Lugano Computing Education

Research Lab

Mouse Visualizer

This exercise shows you how to create a simple GUI application.

Let's implement a “Mouse Visualizer” application that always shows the current
state of the mouse, consisting of:
• the x and y coordinate of the mouse pointer
• the state (pressed or not) of the primary button

(i.e., left mouse button / primary trackpad click)
• the state (pressed or not) of the secondary button

(i.e., right mouse button / secondary trackpad click)

Let's create three classes: a main class (Main), a model class (AppModel), and a UI
class (AppUI). The model keeps track of the position and the state of the two buttons.
It also contains methods that create a new model whenever there are changes in
the position or the status of a mouse button.
This architecture separates the UI code to produce graphics and the model.

 Composition in Java Lab 10

 Page 4 of 24 LuCE Lugano Computing Education

Research Lab

Task A1
Class: lab.mouse.AppModel
Task: We always should start with the model. For this simple application,

the model’s logic is trivial.

Define an AppModel record with four components: x and y (integers),
and two booleans that indicate whether the primary and the
secondary mouse button is pressed, respectively.

Add a static, parameterless create method that returns an AppModel
instance with default values (coordinates at 0 and buttons not
pressed).

Add a method updatePosition(int x, int y) that returns a new
model with an updated position based on the parameters.

Similarly, add two methods updatePrimaryButton(boolean pressed)
and updateSecondaryButton(boolean pressed) that return a new
model updating respectively the primary and the secondary button
(with true or false, depending on the parameter value).

Run in
JShell:

AppModel.create()

Result: AppModel[primaryButtonPressed=false,
 secondaryButtonPressed=false,
 x=0, y=0]

Run in
JShell:

AppModel.create()
 .updatePosition(10, 20)
 .updateSecondaryButton(true)

Result: AppModel[primaryButtonPressed=false,
 secondaryButtonPressed=true,
 x=10, y=20]

 Composition in Java Lab 10

 Page 5 of 24 LuCE Lugano Computing Education

Research Lab

Task A2
Class: lab.mouse.AppUI
Task: Implement a method that renders an x and y position:

public static Graphic position(int x, int y)

Do this by overlaying a text on top of a rectangle.

The rectangle should have width twice as big as INDICATOR_SIZE and
the height should be 1/6 of the width.

Run in
JShell:

show(AppUI.position(100, 200));

Output:

Task A3
Class: lab.mouse.AppUI
Task: Implement a method that produces a graphical indicator for a mouse

button:

public static Graphic mouseButtonIndicator(String name,
 boolean pressed)

Do this by overlaying a red text over a square. The square on the
background should be black if the button is pressed, and white
otherwise.

Run in
JShell:

show(AppUI.mouseButtonIndicator("pressed", true));

show(AppUI.mouseButtonIndicator("not pressed", false));

Output:

 and

 Composition in Java Lab 10

 Page 6 of 24 LuCE Lugano Computing Education

Research Lab

Task A4
Class: lab.mouse.AppUI
Task: Implement a method that renders the complete app:

public static Graphic render(AppModel model)

The two mouse button indicators are below the position.

Run in
JShell:

show(
 AppUI.render(
 AppModel.create()
 .updatePosition(10, 25)
 .updateSecondaryButton(true)
)
);

Output:

 Composition in Java Lab 10

 Page 7 of 24 LuCE Lugano Computing Education

Research Lab

Task A5
Class: lab.mouse.Main
Task: We can finally write mouse handlers to react to mouse events,

updating our model.

Define a method
public static AppModel mouseMoveHandler(AppModel m,
 Coordinate c)
which extracts x and y from a Coordinate and calls updatePosition
on the model.

Define then two methods
public static AppModel mousePressHandler(AppModel m,

Coordinate c, MouseButton b)
and
public static AppModel mouseReleaseHandler(AppModel m,
Coordinate c, MouseButton b)

which both first update the coordinates in the model.
They should then check which mouse button has been pressed.
You can call getButton on a MouseButton instance and check which
one has been pressed. Use MouseButton.PRIMARY and
MouseButton.SECONDARY as constants for the two mouse buttons of
our interest.

Call updatePrimaryButton and updateSecondaryButton on the
model, depending on which button is involved in the event. Pass as
an argument a boolean, indicating whether the button has been
pressed (true) or released (false).

Lastly, implement a play method to configure the Interaction so it
responds to mouse events.

public static void play()

• Create a new Interaction, passing an AppModel to the
constructor (use the AppModel.create() method you defined
to create one).

• Call withRenderer on the Interaction object to pass a method
reference to your render method.

• Call withMouseMoveHandler, withMousePressHandler and
withMouseReleaseHandler on the resulting object to pass
respectively a method reference to your mouse move, press
and release handler methods.

• Call run() on the resulting object to run the interaction
Run in
JShell:

lab.mouse.Main.play();

 Composition in Java Lab 10

 Page 8 of 24 LuCE Lugano Computing Education

Research Lab

B. Dice Game

Now that you have an idea for the architecture of a complete GUI application, we
can raise our ambitions and develop a slightly more sophisticated game.

We will develop a dice game, supporting a variable number of players. Every round,
each player rolls a die; when everyone has rolled, all the players with the highest
rolled number get one point.

The current round is always visible at the top, while the scores of all players are
always visible at the bottom.
The part in the middle shows different information, depending on the phase of the
game: when the round is about to begin, it asks to click with the mouse to start
taking turns. Then, it will ask each player to click with the mouse to roll, show the
result and click to proceed to the next player. When everyone has rolled in a round,
it shows the results with the round winners.
At any point, pressing R on the keyboard resets the game to its original state.

See the next page for an example of a game with four players progressing for a full
round.

 Composition in Java Lab 10

 Page 9 of 24 LuCE Lugano Computing Education

Research Lab

Figure 1: The first round begins

Figure 2: The first player is about

to roll

Figure 3: The first player has

rolled 1

Figure 4: The second player is

about to roll

Figure 5: The second player has

rolled 1 too

Figure 6: The third player is

about to roll

Figure 7: The third player has

rolled 2

Figure 8: The last player is about

to roll

Figure 9: The last player has

rolled 2

Figure 10: Both player 3 and 4

rolled a 2, so they get a point for
the round

Figure 11: A new round begins

…

 Composition in Java Lab 10

 Page 10 of 24 LuCE Lugano Computing Education

Research Lab

Task B1
First, we must do some leg work; we need to be able to get and set elements at a
given index in a sequence. This is a good exercise to practice your recursion skills
(if you are in good shape, implementing the following methods should be quick).

Class: lab.dice.game.IndexedAccess
Task: Implement the following methods:

public static <T> T get(int index, Sequence<T> seq)

public static <T> Sequence<T> set(int index, T value,
 Sequence<T> seq)

The get method should return the element at the given index (the first
element is at index 0) in the given sequence.

The set method should return a new sequence, which looks exactly like
the given sequence, but with the element at the given index replaced
by the given value.

Run in
JShell:

IndexedAccess.get(0, of("A", "B"))

Output: ==> A
Run in
JShell:

IndexedAccess.get(1, of("A", "B"))

Output: ==> B
Run in
JShell:

print(IndexedAccess.set(1, "X", of("A", "B")))

Output: AX

 Composition in Java Lab 10

 Page 11 of 24 LuCE Lugano Computing Education

Research Lab

Task B2
Class: lab.Toolbelt
Task: For this exercise, we provided you with tests. As you progress through

the tasks, more of them will succeed.

Most of them require the ability to compare two sequences (for
example, we could want to compare two sequences of players).

Implement in your Toolbelt a generic method equalTo that is used by
the tests to compare two generic sequences. Two sequences are
considered equal if they have the same number of elements, and each
element of the first sequence is equal to the corresponding element
of the second sequence. To compare two individual elements el1 and
el2, use el1.equals(el2).

Run in
JShell:

Toolbelt.equalTo(of(0, 1, 2, 3), range(4))

Output: ==> true
Run in
JShell:

Toolbelt.equalTo(of("A", "B"), of("B", "A"))

Output: ==> false
Run in
JShell:

Toolbelt.equalTo(of("A", "B", "C"), of("A", "B"))

Output: ==> false

 Composition in Java Lab 10

 Page 12 of 24 LuCE Lugano Computing Education

Research Lab

We model the phases of our dice game with the State Pattern, an object-oriented
design pattern which can elegantly model the phases of our game.
During each round, a phase (blue rectangle in the diagram) can initiate a transition
(an arrow in the diagram) of the game to another phase (another blue rectangle).

Task B3
Class: lab.dice.game.Game, lab.dice.game.Player
Task: We start by considering the Game class and the related Player class,

which are the backbone of the model for our game.

At any given point in time, we would like to know:

• int round – Which round we are in
• Phase roundPhase – Which of the four phases within the round

we are in
• Sequence<Player> players – A Sequence of participating Players,

in the order they play. Each Player has a Die (initially yet to roll,
and then rolled) and a score (the number of rounds they won).

• int currentPlayerIndex – A 0-based index of the player whose
turn it is.

First, implement the factory method Player.create that builds a new
Player with a yet-to-roll die (see the Die class) and a score of 0.

Then, implement the factory method Game.create(int playerCount) so
it builds a new Game with the given player count, starting in round 1, in
the first phase (RoundStarted), with current player index set to 0.

Run in
JShell:

Game game = Game.create(4);

game

Output: ==> Game[round=1, roundPhase=RoundStarted[],
 currentPlayerIndex=0, players=Sequence[
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=0]]]

 Composition in Java Lab 10

 Page 13 of 24 LuCE Lugano Computing Education

Research Lab

Task B4
Class: lab.dice.game.phase.RoundStarted
Task: Inside the phase folder you find an interface named Phase which says

that each concrete phase implements two methods: one to handle a
mouse click and another to render itself. Let us postpone our
rendering concerns and focus on the functionalities for now.

We start from the first phase, RoundStarted. This is the phase that
happens at the beginning of each round, just before the players start
taking turns.

Implement the startTurns(Game game) method.
Call the method changePhase on the game to ask it to transition to the
next phase (BeforeRoll). Return the updated game.

When a user clicks in this phase, the action is always to start taking
turns. That’s indeed the only possible outgoing transition shown in the
diagram.

Implement handleMouse(Game game), which for this phase makes no
decision and delegates the work to the startTurns method you just
implemented.

Run in
JShell:

Game beforeFirst = new RoundStarted().startTurns(game);

beforeFirst

Output: ==> Game[round=1, roundPhase=BeforeRoll[],
 currentPlayerIndex=0, players=Sequence[
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=0]]]

 Composition in Java Lab 10

 Page 14 of 24 LuCE Lugano Computing Education

Research Lab

Task B5
Class: lab.dice.game.Die, lab.dice.game.Game
Task: Before proceeding with the implementation of the other phases of the

game, we need to implement some functionalities for our Die.

First and foremost, a die can be rolled. Implement Die.roll to return
a rolled die. Use the generator RND_GEN and its instance method
nextInt(a, b) that returns an integer between a (included) and b
(excluded).

We also need to compare dice (to determine winners).

Implement isHigherOrEqual(Die other) to determine whether the die
it is called on (this) has a number higher than or equal to the other
die received in the parameter.

Implement isHigherOrEqualAll(Sequence<Die> dice) to determine
whether the die it is called on (this) has a number higher than or
equal to all the dice received in the parameter.
Hint: use the comparison method between two dice you just
implemented!

Finally, in class Game implement isWinner. The method checks whether
a given Player of the game is a winner at the end of a round. A Player
is considered a winner if their die is higher than or equal to all the
dice of all the players of the game.
Hint: “being higher or equal” is a reflexive relation; every number is
“higher or equal” to itself. Thus, you do not need to exclude the very
player passed as a parameter from the comparison. A player always
wins against themselves.

Run in
JShell:

Die.roll()

Output: ==> Die[number=5]

Note: Given that rolling a die uses a random number generator, the
values of rolled dice above and in all the subsequent examples will
likely be different for you.

Run in
JShell:

new Die(5).isHigherOrEqual(new Die(5))

Output: ==> true
Run in
JShell:

new Die(5).isHigherOrEqual(new Die(6))

Output: ==> false
Run in
JShell:

new Die(5).isHigherOrEqualAll(of(new Die(5), new Die(6)))

Output: ==> false
Run in
JShell:

new Die(5).isHigherOrEqualAll(of(new Die(5), new Die(4)))

 Composition in Java Lab 10

 Page 15 of 24 LuCE Lugano Computing Education

Research Lab

Output: ==> true
Run in
JShell:

Player mark = new Player(new Die(6), 0);
Player elon = new Player(new Die(1), 0);
Game aiGame = Game.create(2).changePlayers(of(mark, elon));
aiGame.isWinner(mark)

Output: ==> true
Run in
JShell:

aiGame.isWinner(elon)

Output: ==> false

 Composition in Java Lab 10

 Page 16 of 24 LuCE Lugano Computing Education

Research Lab

Task B6
Class: lab.dice.game.phase.BeforeRoll
Task: We can focus again on the phases.

In the BeforeRoll phase, a click causes the current player to roll a die.

Implement the method roll.
It should ask the game for the current player and use its
Player.rollDie method to get an updated Player with a rolled die.

Then, build a new sequence where the player at the current index is
replaced with the player with the rolled die you just created above.

Finally, update the game so that it uses the new sequence of players,
and change the phase to AfterRoll.

Use Game.currentPlayer() to get the current player.
Use IndexedAccess.set to create an updated Sequence<Player>.

Implement handleMouse(Game game), which also for this phase makes
no decision and delegates the work to the roll method you just
implemented.

Run in
JShell:

Game afterFirst = new BeforeRoll().roll(beforeFirst);

afterFirst

Output: ==> Game[round=1, roundPhase=AfterRoll[],
 currentPlayerIndex=0, players=Sequence[
 Player[die=Die[number=1], score=0],
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=0]]]

 Composition in Java Lab 10

 Page 17 of 24 LuCE Lugano Computing Education

Research Lab

Task B7
Class: lab.dice.game.phase.AfterRoll
Task: In the AfterRoll phase, a user click can lead to two different actions:

• If the current player is the last one, everybody has rolled a die
and we can thus conclude the round by checking who are the
winners and updating the scores.

• If instead there are still more players that need to roll their die,
we need to give the turn to the next one.

Implement the method nextPlayer to execute the second scenario
described above. The game should transition to the BeforeRoll state
for the immediate next player. Use Game.advancePlayer to increment
the current player index.

Implement the method endTurns to execute the first scenario. This
involves determining for each player whether they are a winner (note
that multiple players can win a round, if they all have a score higher
than or equal to everybody else). Use Game.isWinner to figure out if a
Player is a winner, and Player.updateScore to possibly increase a
player’s score. The game should then be updated with the players
updated as described and transition to the RoundCompleted phase.

Finally, implement the handleMouse method. Either call nextPlayer or
endTurns, depending on whether the current player is the last one. The
game conveniently offers the isLastPlayer method, which checks the
current player index for you.

Run in
JShell:

Game beforeSecond = new AfterRoll().nextPlayer(afterFirst);

beforeSecond

Output: ==> Game[round=1, roundPhase=BeforeRoll[],
 currentPlayerIndex=1, players=Sequence[
 Player[die=Die[number=1], score=0],
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=0]]]

Run in
JShell:

Game solitaryGame = Game.create(1);
Game solitaryBefore = new RoundStarted().startTurns(solitaryGame);
Game solitaryAfter = new BeforeRoll().roll(solitaryBefore);
Game solitaryCompleted = new AfterRoll().endTurns(solitaryAfter);
solitaryCompleted

 Composition in Java Lab 10

 Page 18 of 24 LuCE Lugano Computing Education

Research Lab

Output: ==> Game[round=1, roundPhase=RoundCompleted[],
 currentPlayerIndex=0, players=Sequence[
 Player[die=Die[number=1], score=1]]]

 Composition in Java Lab 10

 Page 19 of 24 LuCE Lugano Computing Education

Research Lab

Task B8
Class: lab.dice.game.phase.RoundCompleted
Task: The RoundCompleted phase simply shows to the players the result of the

current round, with the winners and the updated scores.
The only possible action is moving to a fresh new round.

Implement the method nextRound. We should prepare for the next
round: all the players should reset their die to a yet-to-roll state (see
Player.resetDie). The game should advance to the new round by
incrementing the round number and resetting the current player index
to 0 (use Game.advanceRound to accomplish both). And, finally, the
phase should also change to RoundStarted.

Hint: map is very convenient to update all the Players in a sequence.

Implement handleMouse(Game game), which for this phase too makes
no decision and delegates the work to the nextRound method you just
implemented.

Run in
JShell:

Game twoPlayersGame = Game.create(2);
Game twoBeforeFirst = new RoundStarted().startTurns(twoPlayersGame);
Game twoAfterFirst = new BeforeRoll().roll(twoBeforeFirst);
Game twoBeforeSecond = new AfterRoll().nextPlayer(twoAfterFirst);
Game twoAfterSecond = new BeforeRoll().roll(twoBeforeSecond);
Game twoCompleted = new AfterRoll().endTurns(twoAfterSecond);
Game twoSecondRound = new RoundCompleted().nextRound(twoCompleted);
twoSecondRound

Output: ==> Game[round=2, roundPhase=RoundStarted[],
 currentPlayerIndex=0, players=Sequence[
 Player[die=Die[number=0], score=0],
 Player[die=Die[number=0], score=1]]]

 Composition in Java Lab 10

 Page 20 of 24 LuCE Lugano Computing Education

Research Lab

We have now implemented the logic for our game (the “model”). How do we render
it as a graphic? The header and the footer are independent of each phase, but the
main body content varies depending on which round phase we are in.

If we were to completely separate the model entities (the game, the phase, the die…)
from the rendering (as we did for the “Mouse Visualizer”, and as it would be good
practice), we would not be able to know which phase to render without some ugly
code that switches across phases.
We want to avoid this: it is not a clean object-oriented approach.
(Quite advanced note: there is a way to solve this problem with a rather elaborate
design pattern, the visitor pattern.)

Instead, let’s practice polymorphism and exploit dynamic dispatch. Each class that
needs to be rendered will have an instance method render(Game). This method (and
possibly, smaller helper methods defined in the same class) will be responsible for
rendering the model.

To avoid polluting our classes with lots of Graphic-related methods, we will package
our “utility methods” to draw certain UI components inside the ui folder. These
methods will not depend on our model classes.

Let’s give this a try for rendering a die.

 Composition in Java Lab 10

 Page 21 of 24 LuCE Lugano Computing Education

Research Lab

Task B9
Class: lab.dice.game.Die, lab.dice.game.ui.DieUI
Task: Implement the render method to render a die. Only a rolled die can

be rendered, thus assert that it has been actually rolled.

Delegate all the UI part to the DieUI.die, which takes in just the
number of the rolled die (between 1 and 6).

In ui.DieUI there is already some useful code to draw a die.

Implement the method die to overlay the dots (at 80% of the side)
over a square with rounded corners. The radius of the corner
should be 10% of the side.

Implement the method dots to draw a 3-by-3 grid of dots. The
CONFIGURATIONS constant provides all 6 possible dice
configurations, each represented as a 3-by-3 matrix of booleans
(where true means a dot, false means no dot).
Don’t forget Toolbelt.aboves and besides to get the job done.

To access the correct configuration, use IndexedAccess.get. Note
that the first element of CONFIGURATIONS (at index 0) corresponds to
the number 1 for the die.

Run in
JShell:

show(new Die(5).render());

Output:

 Composition in Java Lab 10

 Page 22 of 24 LuCE Lugano Computing Education

Research Lab

Task B10
Class: lab.dice.game.phase.AfterRoll,

lab.dice.game.phase.RoundCompleted
Task: The render method for the first two phases (RoundStarted and

BeforeRoll) is already implemented. They just show some instructions
to the user.

Complete the implementation of render in AfterRoll to render the die
the player has just rolled. You can ask the game who is the current
player, and then render their die.

Complete the implementation of the methods called by render in
RoundCompleted. The method renderScoreTable should render one row
per player using the renderScoreTableRow method.

Use Sequences.zipWithIndex to process the players alongside their
index in the sequence. For each player, call renderScoreTableRow with
their index, their die, and whether they are winners (ask the Game!).

Sequences.map is particularly useful to do this for all players.

Run in
JShell:

show(new AfterRoll().render(afterFirst))

Output:

Run in
JShell:

show(new RoundCompleted().render(twoCompleted))

Output:

 Composition in Java Lab 10

 Page 23 of 24 LuCE Lugano Computing Education

Research Lab

Task B11
Class: lab.dice.game.Game
Task: Implement the render method to render the game.

Place one above the other the header, the body and the footer. Call the
three related methods.

Implement renderHeader calling GameUI.headerWithTitle. The title
should be “Round 1”, “Round 2”, ... depending on the current round
number.

Implement renderFooter. The footer consists of all the score
indicators for each player of the game, one next to the other.
You can call GameUI.scoreIndicator to draw one score indicator,
passing in the player index in the sequence, their score, and the total
number of players. Use again Sequences.zipWithIndex to process the
players alongside their index in the sequence.

Implement renderBody. The content of the body depends on the
phase: each phase knows how to draw itself (remember
Phase.render(Game) in the interface?). We can thus produce the body
content by calling render on the current game phase (this is the
polymorphic call!), passing in the current game as an argument. Use
this to get a reference to the game.
Then, pass to GameUI.body as an argument the Graphic for the body
content rendered by the phase. The method will place it on top of a
black background.

Run in
JShell:

show(beforeFirst.render())

Output:

Run in
JShell:

show(afterFirst.render())

Output:

 Composition in Java Lab 10

 Page 24 of 24 LuCE Lugano Computing Education

Research Lab

Task B12
Class: lab.dice.Main
Task: Implement the interaction in the body of the play method.

Call IO.interact with one argument: the initial Game object, which you
can obtain with Game.create. As an argument, choose the number of
players you prefer.

Then, using the fluent API we have already seen multiple times,
configure the interaction using the following with… methods:

• withRenderer(…) – pass a lambda or method reference that,
given a game instance, renders it using the Game.render
method.

• withKeyTypeHandler(…) – pass a method reference to the
Main.onKeyType method.

• withMousePressHandler(…) – pass a method reference to the
Main.onMousePress method.

Finally, conclude the chain of method invocations with .run() to
execute your interaction.

Notice a difference compared to the Pacman game of previous labs:
there is no tick handler! In this case, our game only changes in
response to keyboard keys or mouse button presses.

Now, call the Main.play method from JShell to run the dice game!

If everything has been implemented correctly, you should be able to
roll a die every round for each player. At the end of each round, one
point is assigned to all players who rolled the highest number.

Run in
JShell:

lab.dice.Main.play()

