
 Composition in Java Lab 11

 Page 1 of 7 LuCE Lugano Computing Education

Research Lab

Photo by Marvin Meyer on Unsplash

Lab 11
Lexical Analyzer

 Composition in Java Lab 11

 Page 2 of 7 LuCE Lugano Computing Education

Research Lab

A. Lexical Analyzer

This lab continues a sequence of labs that builds a “toolchain” for a very simple
programming language that supports integer arithmetic expressions (with variables)
which we started in lab 6.

Here is how we go from the source code to executing our program:

In Lab 6 we developed some of the classes that represent the different nodes of the
Abstract Syntax Tree (AST) of our language (the Node, Lit, Add, Sub, Mul, Div and Neg
classes) using subtyping.
In this lab, we will develop the first stage: the lexical analyzer. It takes in the source
code as a string and produces a sequence of tokens. A token is a consecutive
sequence of characters. The process of "tokenization", of breaking a string into a
sequence of tokens, is called "lexical analysis".

Note that the lexical analyzer only produces tokens, in a rather superficial way. It
does not understand their meaning. For example, in the source code size+2 it does
not know whether + stands for integer addition or string concatenation, and it does
not know whether size is the name of a method, a function, a variable, a type, ...).

Warning: until you complete task A3, the starting code will not compile in its entirety.
That is totally okay. Implement the various parts in the order they are described
here, and “test” them piecewise using the provided snippets for JShell.

 Composition in Java Lab 11

 Page 3 of 7 LuCE Lugano Computing Education

Research Lab

Task A1
Class: lab.lexer.Token
Task: Define the record class Token. We want to record three pieces of

information about a token:
• What is the type of the token (one of the instances of

TokenType).
• What is the text of the token (a String)
• At which position in the source code the token starts (an

int)

Implement a method int length() that returns the length of the
text of the token.

Run in
JShell:

new Token(TokenType.LITERAL, "12", 0)

Output: ==> Token[type=LITERAL, text=12, startPosition=0]
Run in
JShell:

new Token(TokenType.EOF, "", 8)

Output: ==> Token[type=EOF, text=, startPosition=8]

 Composition in Java Lab 11

 Page 4 of 7 LuCE Lugano Computing Education

Research Lab

We will not keep creating these tokens manually. We can use an object-oriented
design pattern, Factory, and create classes whose responsibility is to create new
Token instances.
We will have to detect these tokens in the source code. How can we do that?
One token is especially easy to detect: at the end of the source code, we implicity
assume the presence of an <EOF> (End Of File) token, which signals the end of the
source and doesn’t have any associated text.
Other tokens are just slightly more complex: for example, it’s not too hard to detect
a * by comparing each character in the source string.
Finally, other tokens are harder to detect: they span multiple characters and
possibly have non-trivial variations. This “recognition task” is commonly solved in
programming using regular expressions (often abbreviated as RegEx).

Here is a class hierarchy for modeling our various factories of tokens.

Each concrete class is responsible for producing tokens of one of our nine token
types. The key functionality of a factory is being able to recognize a token at a
certain position in the source code and, in case of success, produce the
corresponding token object.

This is indeed the contract promised by the abstract TokenFactory at the top of our
hierarchy:
Option<Token> matchStartingFrom(int position);

Task A2
Class: lab.lexer.EndOfFileTokenFactory
Task: Implement matchStartingFrom in EndOfFileTokenFactory.

This factory produces a token (an EOF token) iff the position is at the
end of the source string.
The return type of the method makes it clear that we cannot always
produce and return a token. Return Options.none() when the token
cannot be produced, and Options.some(...) otherwise.

Run in
JShell:

new EndOfFileTokenFactory("12").matchStartingFrom(0)

Output: ==> None[]
Run in
JShell:

new EndOfFileTokenFactory("12").matchStartingFrom(2)

Output: ==> Some[value=Token[type=EOF, text=, startPosition=2]]

 Composition in Java Lab 11

 Page 5 of 7 LuCE Lugano Computing Education

Research Lab

Task A3
Class: lab.lexer.*TokenFactory
Task: Open and carefully peruse the abstract class RegexTokenFactory.

The method matchStartingFrom is already implemented. It uses a
Matcher, part of the standard Java library, to check whether the
source code at a given position matches against a specific regular
expression (the “rule”).

Implement the constructor of the eight concrete subclasses, calling
the constructor of the parent class (RegexTokenFactory) using super
with the right token type and the suitable regular expression.

Here are the regular expressions you need for all the factories.
(Note: some of them look more complex than they need to be.
That’s because they contain escape sequences.)

Class Regex
IdentifierTokenFactory "[A-Za-z_]\\w*"
LiteralTokenFactory "([1-9]\\d*)|0"
MinusTokenFactory "-"
ParenCloseTokenFactory "\\)"
ParenOpenTokenFactory "\\("
PlusTokenFactory "\\+"
SlashTokenFactory "/"
StarTokenFactory "*"

Run in
JShell:

new LiteralTokenFactory("(x+y)*456").matchStartingFrom(6)

Output: ==> Some[value=Token[type=LITERAL, text=456, startPosition=6]
Run in
JShell:

new IdentifierTokenFactory("(x+y)*456").matchStartingFrom(1)

Output: ==> Some[value=Token[type=IDENTIFIER, text=x,
 startPosition=1]]

Run in
JShell:

new IdentifierTokenFactory("(x+y)*456").matchStartingFrom(0)

Output: ==> None[]
Run in
JShell:

new ParenOpenTokenFactory("(x+y)*456").matchStartingFrom(0)

Output: ==> Some[value=Token[type=PAREN_OPEN, text=(,
 startPosition=0]]

 Composition in Java Lab 11

 Page 6 of 7 LuCE Lugano Computing Education

Research Lab

Task A4
Class: lab.lexer.LexicalAnalyzer
Task: We can now turn our attention to the main class, LexicalAnalyzer.

Here is the basic idea: the lexer maintains a sequence containing
all the factories for the various kinds of tokens.

The lexer “moves” over the source, starting at the beginning. It does
this by keeping a mutable instance variable position that indicates
the position on the source code the lexer is about to analyze.

The lexer does not immediately tokenize the whole source code. It
only produces one token at a time, when fetchNextToken is called.
The token fetched is stored in a mutable currentToken field.
Note that currentToken has type Option<Token>, which captures the
fact that we might not have a token (that’s the case at the very
beginning, before fetching even the first token).

How does the lexer decide which token to produce? It knows all the
various factories (field factories). It asks all of them to try to
produce a Token starting from the current position. Most of the
factories will not produce any token. If the source is valid, at least
one factory will produce a token. When there are multiple tokens
that can be produced, the lexer prefers the longest token (a principle
known as “maximal munch” or “longest match”).

Implement the helper method findLongestToken that returns the
longest token among a sequence of (optional) tokens. Note that
even a token of length 0 (e.g., the EOF token) is considered longer
than no token at all.

Use Options.fold (which can be nested) to deal with Option.

Run in
JShell:

Token t1 = new Token(TokenType.LITERAL, "12", 0);
Token t2 = new Token(TokenType.LITERAL, "123", 0);
new LexicalAnalyzer("123").findLongestToken(of(some(t1),
some(t2)))

Output: ==> Some[value=Token[type=LITERAL, text=123,
 startPosition=0]]

Run in
JShell:

new LexicalAnalyzer("123").findLongestToken(of(none()))

Output: None[]
Run in
JShell:

new LexicalAnalyzer("123").findLongestToken(of(none(),
some(t1)))

Output: ==> Some[value=Token[type=LITERAL, text=12, startPosition=0]]
Run in
JShell:

Token eof = new Token(TokenType.EOF, "", 0)
new LexicalAnalyzer("123").findLongestToken(of(none(),
some(eof)))

Output: ==> Some[value=Token[type=EOF, text=, startPosition=0]]

 Composition in Java Lab 11

 Page 7 of 7 LuCE Lugano Computing Education

Research Lab

 Task A5
Class: lab.lexer.LexicalAnalyzer
Task: Implement findToken, the core of the lexer.

It needs to do the following:

• Ask each factory to try to produce a token starting from the
current. Use TokenFactory.matchStartingFrom and
Sequences.map.

• Find the longest token using the findLongestToken method
you just implemented.

• “Advance” / “Move” the lexer (updating the currentPosition
field) by the length of the text of the produced token.

• Return the produced token.

Tests: The lexer is now complete. All the tests in LexicalAnalyzerTest
should now pass.

