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A. Recursive Descent Parser 
 
This lab continues a sequence of labs that builds a “toolchain” for a very simple 
programming language of integer arithmetic expressions. 
 
As a reminder, here is how we go from the source code to executing our program: 
 

In Lab 6, we developed some of the classes that represent the different nodes of 
the Abstract Syntax Tree (AST) of our language (the Node, Lit, Add, Sub, Mul, Div and 
Neg classes) using subtyping. Every Node has a method evaluate, which acts as our 
interpreter and produces an integer result.  
In Lab 11, we developed the lexical analyzer which can tokenize our source string. 
In this lab, we will develop the missing stage: the parser. 
 
A parser turns tokens into an Abstract Syntax Tree (AST). There is a lot to say about 
parsers, languages, and their complexity (you will take a peek of that in a course 
next semester). Here we will develop a recursive descent parser, using mutually 
recursive methods and loops. Therefore, this lab is a good exercise to practice 
recursion, loops, conditionals, and mutation. It is not going to be easy, but the 
ultimate result is quite rewarding! 
  



 Composition in Java  Lab 12 

     Page 3 of 13 LuCE Lugano Computing Education

Research Lab

This lab builds on top of the lexical analyzer and the AST. It’s essential you do them 
before working on this lab. If you still have not done them, now is the right moment. 
 
 
Do the following: 
 

• Copy the src/main/java/lab/nodes folder from your lab–06 to lab–12 at the 
same path. 

• Copy the src/main/java/lab/lexer folder from your lab–11 to lab–12 at the 
same path. 

 
Warning: the code will only compile after you add your code as described above. 
 
 
Another warning: we are going to develop our parser incrementally; therefore, it is 
important that you follow the tasks in order, as the input/output pairs only reflect 
what has been developed up to that point. 
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Before taking a stab at our big problem (parsing the full language), let’s see how 
this would work for an even simpler language. 
 
Programming languages are often specified in a formal way, at least to some degree. 
Especially their syntax (their grammar) is specified formally, often in a notation 
called the Backus-Naur Form (BNF) or the Extended BNF (EBNF). 
A grammar consists of productions (rules) that describe how pieces of a program 
(e.g., expressions) are made up of smaller pieces. 
 
Concretely, here is the grammar for a “demo language”: 
 
EXPRESSION ::= Literal ( "+" | "-" ) Literal  
 
There is only one production for EXPRESSION: it says an EXPRESSION is made of a 
Literal, then either a + or a -, followed by a Literal. 
 
The full meaning of the meta-symbols of EBNF is the following: 

• Non-terminal symbols (written in ALL_CAPS) represent the names of 
productions. 

• Terminal symbols (written as Normal names) or literals (in "double quotes") 
represent the lexical tokens a program is made of. 

• ::= can be read as "is defined as" (it means that the non-terminal symbol on 
the left is made up of the part on the right). 

• Parentheses (...) simply group related pieces together (like in math). 
• A vertical bar | separates alternatives. 
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Task A1 
Class: lab.parser.DemoParser  
Task: In the demo language, an expression is either an addition or a 

subtraction of two literals. 
 
Let us then first implement a method that parses a literal: 
 
Option<Node> parseLiteral(); 
 
Important: ALL our parseXXX methods throughout this lab: 

• assume that the lexer’s current token is the one that needs to 
be parsed. 

• advance the lexer after completing the parsing (that is: 
remember to call lexer.fetchNextToken() after parsing!). 

• handle errors without crashing by returning Options.none() 
 
Call the method parseLiteral you just implement from the main 
parse method (just after the first token is fetched). 
 
Hint: only produce a Lit node if there is a token and is of type 
TokenType.LITERAL. 
 

Run in 
JShell: 

new DemoParser("12").parse() 

Output: ==> Some[value=Lit[value=12]] 
Run in 
JShell: 

new DemoParser("abc").parse() 

Output: ==> None[] 
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Before proceeding, a hint for all the tasks. 
 
It is not strictly necessary, but your code can probably be simplified by using the 
map and flatMap methods on Option. 
 
 
 
When you have a function that works on the value inside Some (but cannot be 
applied to the None case), you can use the map method to avoid specifying the none 
case, which just shortcuts to Options.none(). 
 
Example: 
Option<String> makeBig(Option<String> str) { 
  return str.fold(s -> s.toUpperCase(), Options.none()); 

} 

can be simplified as: 
Option<String> makeBig(Option<String> str) { 
  return str.map(s -> s.toUpperCase()); 
} 
 
 
 
When you have a function that works on the value inside Some and itself produces 
an Option, you can use the flatMap method to “flatten” the two nested Option. 
 
Example: 
public Option<Character> firstChar(Option<String> str) { 
  return str.fold(s -> s.length() == 0 
                       ? Options.none() 
                       : Options.some(s.charAt(0)), 
                  Options.none()); 
} 

can be simplified as: 
public Option<Character> firstChar(Option<String> str) { 
  return str.flatMap(s -> s.length() == 0 
                          ? Options.none() 
                          : Options.some(s.charAt(0))); 
} 
  



 Composition in Java  Lab 12 

     Page 7 of 13 LuCE Lugano Computing Education

Research Lab

 
Task A2 
Class: lab.parser.DemoParser  
Task: Let’s now implement the method 

 
Option<Node> parseExpression(); 
 
that parses a simple expression in our demo language (i.e., the 
addition or subtraction of two literals): 
 
EXPRESSION ::= Literal ( "+" | "-" ) Literal  
 
Here is a sketch for the implementation: 

• Call parseLiteral to get a node for the left operand. 
• Memorize (e.g., in a local variable) the token type for the 

operator. We cannot immediately produce an addition or 
subtraction node at this point, because we still have not 
produced the node for the right operand. Move the lexer to 
the next token. 

• Call parseLiteral to get a node for the right operand. 
• Create an Add or a Sub node depending on the operator type. 

 
Update the main parse method so that it calls parseExpression now, 
instead of just parseLiteral. 
 

Run in 
JShell: 

new DemoParser("1+2").parse() 

Output: ==> Some[value=Add[left=Lit[value=1], right=Lit[value=2]]] 
Run in 
JShell: 

new DemoParser("1-2").parse() 

Output: ==> Some[value=Sub[left=Lit[value=1], right=Lit[value=2]]] 
Run in 
JShell: 

new DemoParser("1*2").parse() 

Output: ==> None[] 
Run in 
JShell: 

new DemoParser("1+").parse() 

Output: ==> None[] 
Run in 
JShell: 

new DemoParser("12").parse() 

Output: ==> None[] 

 
  



 Composition in Java  Lab 12 

     Page 8 of 13 LuCE Lugano Computing Education

Research Lab

Task A3 
Class: lab.parser.DemoParser  
Task: Our parser seems to work well, but it still does not check that we do 

not have extra spurious tokens at the end of an expression. 
 
At the moment,  new DemoParser("1+2+").parse()  gives us back 
Some[value=Add[left=Lit[value=1], right=Lit[value=2]]] 
despite not being a valid expression according to the grammar. 
 
Modify the main parse method so that it checks that after parsing 
the expression the lexer has effectively reached the end of the 
source (i.e., the current token is EOF). 
 

Run in 
JShell: 

new DemoParser("1+2").parse() 

Output: ==> Some[value=Add[left=Lit[value=1], right=Lit[value=2]]] 
Run in 
JShell: 

new DemoParser("1+2+").parse() 

Output: ==> None 
Tests: Our parser for the demo language is now complete. All the tests in 

DemoParserTest should now pass. 
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Parser for Arith Language 
 
Now that we have a working parser for the demo language, we can look at the full 
grammar for our language of arithmetic expressions. 
 
The language has this syntax, in EBNF: 
 
EXPRESSION   ::= [ "+" | "-" ] TERM { ( "+" | "-" ) TERM } 
TERM         ::= FACTOR { ( "*" | "/" ) FACTOR } 
FACTOR       ::= Literal  
               | "(" EXPRESSION ")" 
 
The production for EXPRESSION indicates that an expression is made up of 
an optional "+" or "-", followed by a TERM, followed by zero or more pieces 
consisting of "+" or "-" followed by a TERM. 
 
Indeed, this grammar uses two more meta-symbols compared to the Demo one 
from before:  

• Square brackets [...] mean optional, meaning zero or one. 
• Curly braces {...} surround potentially repeated pieces, meaning zero or 

more. 
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A note on Concrete vs Abstract Syntax 
There is a close connection between the symbols in a grammar and the AST node 
classes: 

• It looks like there almost is an AST node class for each symbol. 
• It looks like non-terminal symbols represent interior nodes (nodes with 

children) of the AST. 
• It looks like terminal symbols represent leaf nodes in the AST (e.g., terminal 

symbol Literal and AST node class Lit). 
• It looks like that the right-hand side of a production defines the children of 

the corresponding AST node (e.g., a Mul AST node, which is a kind of Term, has 
two children). 

 
However, there is not really a 1:1 mapping between EBFN productions and AST node 
classes. The EBNF defines the concrete syntax of the language, with all the details 
you will see in the source code. The AST node classes define the abstract syntax of 
the language, focusing on the computationally relevant aspects. 
  
One difference between the EBNF grammar and the AST node class hierarchy is that 
often you have one EBNF rule that corresponds to multiple different AST node 
classes. 
For example, the rule for TERM in the EBNF is both about "*" and "/". It is about the 
two arithmetic operations that have higher precedence (compared to "+" and "-"). 
It relates not to one, but to two AST node classes: Mul and Div. 
  
Another difference between the EBNF grammar and the AST node class hierarchy is 
that you usually will not see any information about parentheses, like what you see 
in 5-(2+3), in the AST node classes, but you will see information about parentheses 
in the EBNF. 
For example, the FACTOR production in our grammar includes "(" and ")", but our 
ASTs do not retain any explicit information about parentheses. The precedence of 
which operation to compute first, for which one uses parentheses in the concrete 
grammar (and thus in the source code), is implicitly encoded in the AST through 
nesting. The same thing happens when drawing Expression Trees, which in fact are 
based on Abstract Syntax Trees. 
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Task A4 
Class: lab.parser.ArithParser  
Task: We will implement one parseXXX method for each production. To 

bootstrap our implementation, let’s focus on FACTOR and assume 
that the other two productions just delegate all the work to the other 
methods. We will be implementing this grammar:  
 
EXPRESSION   ::= TERM 
TERM         ::= EXPRESSION 
FACTOR       ::= Literal  
               | "(" EXPRESSION ")" 
 
Implement 

• parse so that it calls parseExpression and checks that the last 
token is indeed an EOF, exactly like you did for the demo 
language 

• parseExpression so that it just calls parseTerm 
• parseTerm so that it just calls parseFactor 

 
Then, let us focus on parseFactor. Implement it so that it returns 
proper nodes for the two cases: 

• a literal, for which you need to produce a Lit node. 
• a parenthesized expression, for which you need to “consume” 

the open parenthesis, recursively call the proper method to 
parse an expression, and ensure that it is followed by a closed 
parenthesis. 

 
Use the already implemented helper method 
currentlyAt(TokenType) to check whether the lexer is at a specific 
token. 
Do not forget to advance the lexer after processing a token. 
 

Run in 
JShell: 

new ArithParser("123").parse() 

Output: ==> Some[value=Lit[value=123]] 
Run in 
JShell: 

new ArithParser("(1)").parse() 

Output: ==> Some[value=Lit[value=1]] 
Run in 
JShell: 

new ArithParser("((123)").parse() 

Output: ==> None[] 
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Task A5 
Class: lab.parser.ArithParser  
Task: Implement parseTerm according to the full grammar: 

 
TERM         ::= FACTOR { ( "*" | "/" ) FACTOR } 
 
A term can be just a factor, or it can be followed by an arbitrary 
number of multiplication/divisions with another factor. 
 
We can parse a factor calling the parseFactor method we just 
implemented. We can then use a while loop until we keep seeing a 
STAR or a SLASH token. 
When we encounter one of those two tokens, we can memorize 
whether it indicates a multiplication (as opposed to a division), 
move to the next token and then parse the other factor. 
This other factor becomes the right operand of the new Mul or Div 
node we need to create.  
 
Use currentlyAt(TokenType) in the condition of the loop. 
Keep the tree you are building in this method in a mutable local 
variable. Initialize it with the result of parsing the first factor, and 
then update it inside the loop body every time you create a new 
node. 
Do not forget to advance the lexer after processing a token. 
 

Run in 
JShell: 

new ArithParser("1*2").parse() 

Output: ==> Some[value=Mul[left=Lit[value=1], right=Lit[value=2]]] 
Run in 
JShell: 

new ArithParser("1*2/3").parse() 

Output: ==> Some[value=Div[left=Mul[left=Lit[value=1], 
                            right=Lit[value=2]], 
                   right=Lit[value=3]]] 

Run in 
JShell: 

new ArithParser("1*2*3").parse() 

Output: ==> Some[value=Mul[left=Mul[left=Lit[value=1], 
                            right=Lit[value=2]], 
                   right=Lit[value=3]]] 

Run in 
JShell: 

new ArithParser("1*2*").parse() 

Output: ==> None[] 
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Task A6 
Class: lab.parser.ArithParser  
Task: Implement parseExpression according to the full grammar: 

 
EXPRESSION   ::= [ "+" | "-" ] TERM { ( "+" | "-" ) TERM } 
 
If you ignore for a moment the first optional part, parsing an 
expression looks pretty much like parsing a term. You can follow the 
same guidelines of the previous task: use a loop and produce Add or 
Sub nodes. 
 
Once that is in place, we can think of the first part. If there is a plus 
token at the very beginning, that just acts as a unary plus. But +TERM 
is the same as TERM, so we can just move to the next token. 
 
If there is a minus token, that acts as a unary minus applied on the 
first term. Therefore, you can first call parseTerm, and then “wrap” its 
result in a Neg node. 
 

Run in 
JShell: 

new ArithParser("1+2").parse() 

Output: ==> Some[value=Add[left=Lit[value=1], right=Lit[value=2]]] 
Run in 
JShell: 

new ArithParser("+1+(2)").parse() 

Output: ==> Some[value=Add[left=Lit[value=1], right=Lit[value=2]]] 
Run in 
JShell: 

new ArithParser("-1+2").parse() 

Output: ==> Some[value=Add[left=Neg[expr=Lit[value=1]],  
                   right=Lit[value=2]]] 

Run in 
JShell: 

new ArithParser("(1/2)+10").parse() 

Output: ==> Some[value=Add[left=Div[left=Lit[value=1], 
                            right=Lit[value=2]], 
                   right=Lit[value=10]]] 

Tests: Our parser for the arithmetic language is now complete. All the tests 
in ArithParserTest should now pass. 

 
Now that we have the entire toolchain implemented, we can write and execute 
arbitrarily complex arithmetic expressions! 
 
Run in 
JShell: 

new ArithParser("12*(3+4)") 
.parse() 
.map(Node::evaluate) 

Output: ==> Some[value=84] 
Run in 
JShell: 

new ArithParser("-1*2*3*4*5*6*7*8*9") 
.parse() 
.map(Node::evaluate) 

Output: ==> Some[value=-362880] 
 


