
 Composition in Java Workbook 1

 Page 1 of 12 LuCE Lugano Computing Education

Research Lab

Methods, Expressions, Parameters
Student name:

TA signature:

Concepts Check off understood concepts, connect related concepts, label connections

Make sure you can explain each concept and each connection, you can provide ex-
amples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
rectangle • triangle • ellipse • circularSector • text • Graphic • Color • RED • GREEN
• BLUE • CYAN • MAGENTA • YELLOW • BLACK • WHITE • rotate • overlay • above • beside •
Toolbelt

◼ Name ◼ Value

◼ Parameter

◼ Method

◼ Type

◼ Call

◼ Argument

◼ Expression

◼ Body ◼ return- Statement

◼ Return Type

◼ assert- Statement

contains

◼ Tree

◼ Subtree◼ Subexpression

◼ Class

◼ Invocation

◼ Code Clone

◼ Statement

is a is a

◼ Operation◼ associative

◼ commutative

◼ distributive

◼ Algebraic
Property

is

is

is

◼ Node

may contain

is a

 Composition in Java Workbook 1

 Page 2 of 12 LuCE Lugano Computing Education

Research Lab

Calling Methods - Primitive Graphics
JTamaro, the library we use in this course, provides methods to produce graphics.
Here are the headers (return type, name, parameters) of these methods:

Graphic rectangle(double width, double height, Color color)

Graphic triangle(double side1, double side2, double angle, Color color)

Graphic ellipse(double width, double height, Color color)

Graphic circularSector(double radius, double angle, Color color)

Graphic text(String content, String font, double fontSize, Color color)

The angle parameter in the triangle and circularSector methods
(like angles in every other part of JTamaro) is specified in degrees, with
0 degrees pointing right, and positive angles going counterclockwise.

JTamaro also provides some names for various values of type Color:
RED GREEN BLUE CYAN MAGENTA YELLOW BLACK WHITE

In Java, to call (invoke) a method, we write the name of the method, followed by
parentheses that may contain arguments (one argument for each parameter of the
method):

circularSector(10, 90, RED)

Write expressions that invoke the methods documented above to produce…

a red rectangle with width 200 and height 100:

a blue square with side length 200:

a yellow equilateral triangle with side length 200:

a black circle with diameter 200:

a magenta text with the content “Ciao!” in Helvetica font of size 200:

0180

270

90

 Composition in Java Workbook 1

 Page 3 of 12 LuCE Lugano Computing Education

Research Lab

Nesting Method Calls - Rotation of a Graphic
JTamaro provides a method that produces a rotated (counterclockwise) copy of a
given graphic:
Graphic rotate(double angle, Graphic graphic)

To call this method, you need to provide two arguments: an angle and a graphic:

rotate(90, ellipse(200, 100, RED))

Write expressions that invoke rotate and other methods to produce…

a black diamond (square standing on its corner) with side length 200:

a text “Wrong way!” rotated by 180 degrees in red 200-size Helvetica:

a text “upwards” slanted 30 degrees upward in red 200-size Helvetica:

Combining Two Graphics: overlay, beside, and above
JTamaro provides a method that produces a new graphic that consists of one
graphic overlaid on top of the center of another graphic:
Graphic overlay(Graphic top, Graphic bottom)

To call this method, you need to provide two arguments of type Graphic:

overlay(rectangle(10, 10, WHITE), rectangle(200, 200, BLACK))

Write expressions that invoke overlay and other methods to produce…

a black circle with diameter 200 on top of a white square with side length 200:

a black circle with diameter 100 on top of a white circle with diameter 200:

 Composition in Java Workbook 1

 Page 4 of 12 LuCE Lugano Computing Education

Research Lab

JTamaro also provides two other methods that combine two graphics:
Graphic above(Graphic top, Graphic bottom)

Graphic beside(Graphic left, Graphic right)

Write expressions that invoke above, beside, and other methods to produce…

beside(

 circularSector(200, 90, BLACK),

 circularSector(200, 90, BLACK)

)

 Composition in Java Workbook 1

 Page 5 of 12 LuCE Lugano Computing Education

Research Lab

Seeing Expressions as Trees
Expressions are pieces of source code that produce a value. Here is an example:

overlay(rectangle(10, 10, WHITE), rectangle(200, 200, BLACK))

We can write the same expression differently, with extra spaces and line breaks:

overlay(
 rectangle(10, 10, WHITE),
 rectangle(200, 200, BLACK)
)

Other formats are possible. Which of the following do you prefer? Why?

(a) (b) (c)
overlay(
 rectangle(
 10,
 10,
 WHITE
),
 rectangle(
 200,
 200,
 BLACK
)
)

overlay
 (
rectangle (10 ,
 10
,WHITE
)
,rectangle(200,200

,BLACK

)

)

overlay(
 rectangle(
 10,
 10,
 WHITE
),
 rectangle(
 200,
 200,
 BLACK
)
)

Format (a) consistently brings out the nested hierarchical structure of the expres-
sion. An expression forms a tree, where each subtree corresponds to a subexpres-
sion (an expression inside another expression).

Which of the following code pieces are expressions (in Java)? Why/why not?
☐ overlay(☐ (10, 10, WHITE)
☐ 10 ☐ WHITE
☐ , ☐ rectangle(10, 10, WHITE)
☐ 200, 200 ☐ rectangle

Draw the tree for each of the following expressions:

Code: 200 rectangle(10, 10, WHITE) WHITE circleOnSquare()
Tree:

Write the expression corresponding to the given tree:

 Composition in Java Workbook 1

 Page 6 of 12 LuCE Lugano Computing Education

Research Lab

Methods – Named, Reusable Expressions
Remember the expression to create a circle on a square?
overlay(
 ellipse(100, 100, BLACK),
 rectangle(100, 100, WHITE)
)

Every time you need a circle on a square you have to write all that code. Wouldn’t
it be nice if you could write the code only once, give it a name, and then just write
that name whenever you need a circle on a square?

In Java that’s possible. You can create your own method, with a name of your choice,
put the expression inside that method, and call the method whenever you want to
evaluate the expression. Here is how you define such a method:

 public static Graphic circleOnSquare() {
 return overlay(
 ellipse(100, 100, BLACK),
 rectangle(100, 100, WHITE)
);
 }

The part inside the curly braces { } is the method body. It consists of a return state-
ment. That return statement contains an expression (highlighted) that produces the
value the method will return. The word Graphic in front of the method name defines
that this method will return a value of type Graphic whenever we call it. We will
explain the public and static keywords in the future. For now, make all your meth-
ods public and static.

Now that you have that method, you can create a circle on a square by calling it:
circleOnSquare()

Package the following two expressions into methods with the given names:

Expression Method
overlay(
 ellipse(100, 100, BLACK),
 ellipse(200, 200, WHITE)
)

 circleOnCircle

overlay(
 ellipse(100, 100, BLACK),
 ellipse(200, 100, WHITE)
)

 circleOnEllipse

 Composition in Java Workbook 1

 Page 7 of 12 LuCE Lugano Computing Education

Research Lab

Reducing Code Duplication
The circleOnSquare, circleOnCircle, and circleOnEllipse methods share at least
one common subexpression – a part of the expression in their return statements is
the same. A subexpression is an expression that sits inside another expression.
Write down the biggest subexpression that’s common in the three methods:

If we have to write the same code more than once, we call that a code clone. Creat-
ing code clones is bad. If we have multiple copies of the same code, it becomes
difficult to keep them in sync when we need to change them in some way (e.g., here,
if we’d like to change the color from BLACK to RED, we’d have to do that in three
different places).

When we see a code clone, we should very seriously consider eliminating it. How?
By packaging the clone into a method, and by then simply calling that method wher-
ever we previously had a clone. This is the “extract method” refactoring.

Let’s extract the common subexpression from above into a separate method,
named blackCircle. Write that method:

 blackCircle

Now, let’s rewrite the three methods, and, in their bodies, replace the clones with
calls to blackCircle:

Code with Clones Clones Extracted into blackCircle Method
public static Graphic
circleOnSquare() {
 return overlay(
 ellipse(100, 100, BLACK),
 rectangle(100, 100, WHITE)
);
}

public static Graphic circleOnSquare() {

public static Graphic
circleOnCircle() {
 return overlay(
 ellipse(100, 100, BLACK),
 ellipse(200, 200, WHITE)
);
}

public static Graphic circleOnCircle() {

public static Graphic
circleOnEllipse() {
 return overlay(
 ellipse(100, 100, BLACK),
 ellipse(200, 100, WHITE)
);

}

public static Graphic circleOnEllipse() {

 Composition in Java Workbook 1

 Page 8 of 12 LuCE Lugano Computing Education

Research Lab

Reducing Code Duplication – Another Example

Reduce code duplication in the following code (cross out and replace code right
here in the listing). You can introduce new methods.

public static Graphic besideSame() {
 return beside(
 circularSector(200, 90, BLACK),
 circularSector(200, 90, BLACK)
);
}

public static Graphic besideRotated() {
 return beside(
 rotate(0, circularSector(200, 90, BLACK)),
 rotate(90, circularSector(200, 90, BLACK))
);
}

public static Graphic twoByTwoSame() {
 return above(
 beside(
 circularSector(200, 90, BLACK),
 circularSector(200, 90, BLACK)
),
 beside(
 circularSector(200, 90, BLACK),
 circularSector(200, 90, BLACK)
)
);
}

public static Graphic twoByTwoRotated() {
 return above(
 beside(
 circularSector(200, 90, BLACK),
 rotate(90, circularSector(200, 90, BLACK))
),
 beside(
 rotate(180, circularSector(200, 90, BLACK)),
 rotate(270, circularSector(200, 90, BLACK))
)
);
}

 Composition in Java Workbook 1

 Page 9 of 12 LuCE Lugano Computing Education

Research Lab

Operations Can Satisfy Some Properties
Assume you have the following two methods:

public static Graphic wide() {
 return rectangle(200, 80, RED);
}

public static Graphic tall() {
 return rectangle(80, 200, BLUE);
}

Write code that makes one call to wide, one call to tall, and one call to either
above, beside, or overlay. What are all the different graphics you can produce?

Code Sketch of Graphic

above(wide(), tall())

Is the graphic produced by above(wide(), tall()) equal to the graphic produced
by above(tall(), wide())?
☐ yes ☐ no

Is the number produced by 1 + 2 equal to the number produced by 2 + 1?
☐ yes ☐ no

Is the number produced by 1 – 2 equal to the number produced by 2 – 1?
☐ yes ☐ no

Which property does a binary operation ⊕ (a method with two parameters, an op-
erator with two operands) where a ⊕ b = b ⊕ a satisfy?

◯ associativity ◯ commutativity ◯ distributivity

As your sketches show, neither above, nor beside, nor overlay is commutative.

 Composition in Java Workbook 1

 Page 10 of 12 LuCE Lugano Computing Education

Research Lab

Parameterize
Existing methods like rectangle have parameters. To call these methods, you have
to provide a list of arguments, one argument for each parameter.

The methods we developed ourselves so far have not had any parameters. Let’s
create some methods with parameters:

A method that creates a red rectangle with the width corresponding to the value of
a parameter, and the height corresponding to half of that parameter’s value:

public static Graphic redRectangle(double size) {
 assert size >= 0;
 return rectangle(size, size / 2, RED);
}

Notice that we specify a meaningful name for the parameter (size), that we have to
specify its type (double, i.e., a floating-point number), and that we check that the
parameter’s value is acceptable (assert, i.e., it won’t accept negative sizes).

A method that creates a blue square with side length given as parameter:

A method that creates a yellow isosceles triangle with the length of the two equally
long sides given as parameter and an angle of 30 degrees:

A method that creates a black ellipse with height corresponding to the value of a
parameter, and the width corresponding to twice of that parameter’s value:

A method that creates a magenta text with the content “Ciao!” in Helvetica font of
a size given as a parameter:

 Composition in Java Workbook 1

 Page 11 of 12 LuCE Lugano Computing Education

Research Lab

Let’s Build a Toolbelt of Reusable Methods
Whenever we have to write the same expression over and over again, we better put
that expression inside a method. Throughout the remainder of this course, we will
collect such reusable methods in a class we call Toolbelt. A class is a nice way to
group together several related methods.

Throughout this workbook you had to create circles several times. You had to call
the ellipse method for that, which is complicated. You did create a method named
blackCircle, which draws a black circle with a diameter of 100. But we will need
circles with different diameters and different colors.

Let’s write a more general method for creating a circle of any given diameter and
any given color:

public static Graphic circle(double diameter, Color color) {
assert diameter >= 0;

}

Let’s do the same for a method that creates a square. Come up with good names
for the parameters:

public static
 assert

From now on, whenever we have a situation where we need to write similar pieces
of code several times, we will create a method instead. If the method seems gener-
ally useful, we will place it in our Toolbelt class, so that we know where to find it in
the future. Over time, we will collect more and more reusable tools (methods) in
our belt, and we can just call them instead of creating unnecessary code clones.

 Composition in Java Workbook 1

 Page 12 of 12 LuCE Lugano Computing Education

Research Lab

Using your Toolbelt

If you now want to create a circle, you can conveniently call the circle method.
However, if the code that tries to call the circle method is not itself inside the
Toolbelt class, then you have to say that you want to call the circle method of the
Toolbelt class. You do that by writing the class name, followed by a dot, followed
by the method:
Toolbelt.circle(300, RED)

From another class, use your toolbelt’s square method to create a red diamond (i.e.,
a square rotated by 45 degrees) with a side length of 200:

From another class, use your toolbelt’s methods to create a black square with side
length 200 beside a green circle with diameter 200:

