
 Composition in Java Workbook 2

 Page 1 of 12 LuCE Lugano Computing Education

Research Lab

Types, Composition, Conditionals
Student name:

TA signature:

Photo by Lu Amaral on Unsplash

Concepts Check off understood concepts, connect related concepts, label connections

Make sure you can explain each concept and each connection, you can provide ex-
amples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
rgb • compose • pin • Point • TOP_LEFT • TOP_CENTER • TOP_RIGHT • CENTER_LEFT • CENTER
• CENTER_RIGHT • BOTTOM_LEFT • BOTTOM_CENTER • BOTTOM_RIGHT

◼ Name

◼ Value◼ Type

◼ Call◼ Operator

◼ Binary

◼ associative

◼ commutative

◼ distributive

◼ Parameter

◼ evaluate

◼ Traversal

◼ depth- first

◼ post- order

◼ Condition

◼ Conditional
Operator

◼ Ternary

◼ Algebraic
Property

has

is

is

is

◼ Arity

has a

◼ Unary

◼ Nullary

is a

is a
is a
is a

◼ Operation

◼ Method
is a is a

◼ N- aryis a

◼ Argument

ha
s

passed to

◼ Operand

ha
s

◼ Expression

is a

is
 a

can be

has a
◼ Literal

is a

◼ Parentheses

can surround

◼ Type- checking ◼ Type Error

of

 Composition in Java Workbook 2

 Page 2 of 12 LuCE Lugano Computing Education

Research Lab

Composing More Than Two Graphics
The + operator has two operands. It can add two numbers. What about adding more
than two numbers? Write down the expression you use to add the three numbers
10, 20, and 30:

If you want to add 10 numbers, how many + operators do you need?

The methods beside, above, and overlay have two parameters. They can compose
two graphics. What about composing more than two graphics? Write down the ex-
pression you use to produce the following graphics (assume the top ellipse is 80-
by-40, and the bottom ellipse 40-by-80):

Can you write a different expression that produces an equal graphic?

How do we call a binary operation ⊕ (a method with two parameters, an operator
with two operands) where (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)?

◯ associative ◯ commutative ◯ distributive

In the following table, mark cells with an X to indicate operators or methods that
are commutative or associative:
 n + n n - n above(g, g) beside(g, g) overlay(g, g)
commutative
associative

It is quite common that we want to compose more than two graphics. Write an
above3 method that can place any given three graphics above each other (add this
method to your Toolbelt class):
public static Graphic above3(Graphic top, Graphic mid, Graphic bot) {

Language

 Composition in Java Workbook 2

 Page 3 of 12 LuCE Lugano Computing Education

Research Lab

Evaluating an Expression
What is the value of 1 – 2 – 3?
◯ 1 – 2 – 3 = (1 – 2) – 3 = -1 – 3 = -4 ◯ 1 – 2 – 3 = 1 – (2 – 3) = 1 – -1 = 2

Which of the following trees correctly represents the expression 1 – 2 – 3?
◯

◯

◯

In this course, if we represent an expression as a tree, we want to make sure that
every subexpression (every piece of the expression that can itself produce a value,
e.g., an intermediate result) is represented as a subtree. The middle tree above does
not fulfill this. We need to break its root node into multiple nodes (the incorrect
root node in the middle tree combines the application of two – operators; each
application produces a value and should be its own node).

We can use the expression tree to evaluate the expression (to determine the value
the expression produces). For this, we go over the tree with a depth-first post-order
traversal, as shown with the orange line in the left example below, such that we get
the value for a subtree when we leave the root of that subtree.

Here are two trees, annotated with the value of each subtree. What are the corre-
sponding expressions? (For one of them you need to explicitly use parentheses.)

Let’s do the same for some expressions that produce graphics instead of numbers,
and that use methods instead of operators:
beside(
Toolbelt.square(10, BLACK),
Toolbelt.circle(10, BLACK)

)

above(
above(
 Toolbelt.square(10, BLACK),
 Toolbelt.circle(10, BLACK),
),
rectangle(10, 20, BLACK)

)

Language

 Composition in Java Workbook 2

 Page 4 of 12 LuCE Lugano Computing Education

Research Lab

Types
We’ve casually used the word “type” many times so far. More precisely, we can see
a type as a set of values. A type specifies all the values that it represents.

In Java, the built-in type with the smallest number of elements (smallest number of
values) is boolean. It contains only two values: true and false.

The type int represents integer numbers. Watch out! Unlike in math, where the set
of all integer numbers, ℤ, is infinite, the Java type int only offers a finite number of
values: -2147483648 … 2147483647. Integer numbers that are smaller or larger than
that cannot be represented as an int. In Java, we often use the type int when we
want to count something, as long as the count doesn’t get too large.

Can one represent the number of humans on planet Earth in an int?
☐ yes ☐ no

Can one represent the number of bytes of RAM of your computer in an int?
☐ yes ☐ no

The type double represents real numbers. Watch out! Unlike in math, where the set
of all real numbers, ℝ, is infinite, the Java type double only offers a finite number of
values. Values of type double are stored as “double-precision floating-point” num-
bers, using 64 bits. Many numbers cannot be represented exactly in a double, and
thus calculating with double values leads to rounding errors.

Draw an expression tree of the Java expression 0.1 + 0.2 == 0.3, and label each
node with its value:

Compare the values you wrote above with the values you get on your computer.

Here are some of the types we encountered so far, plus a new one, char, for repre-
senting individual characters. For each type, provide two expressions that evaluate
to values of that type: (You will complete the “Primitive?” column next week.)

Type: Primitive? Expression: Expression:
boolean true false & !true
int
double
char 'A'
String
Color
Point
Graphic

Language

 Composition in Java Workbook 2

 Page 5 of 12 LuCE Lugano Computing Education

Research Lab

Literals: Values Embedded in Code
For some types in Java, one can write a value of that type literally in code.

Type Some Literals
boolean true false
int 0 1 1000000 2147483647
char 'A' 'Z' '0' '7' 'a' '-'
double 0.0 100.0 0.00001 1234567890.1234567890
String "Hello" "Hi there!" "---"

Literals are expressions whose evaluation is trivial because their value is already
directly written in code.

An interesting detail is that Java only has positive numeric literals. If you want to
represent a negative number, you have to use the unary minus (i.e., –) operator in
front of a positive literal. Draw the expression tree (with values and types) for:

-123

Which rows contain a legal Java literal, and what is its type?

Literal: Legal Literal? Type:
True
2147483647
1000000000000000
3.1415
1000000000000000.0
-1
'A'
'ABC'
' '
''
'''
'"'
"A"
" "
""
"'"
"""

Parentheses
We have seen parentheses that are used to “group” expressions, e.g., in 1-(2-3).
Which claims are true?

☐ We can always place parentheses around an expression, without changing
its meaning.

☐ In a piece of Java code, every pair of parentheses “groups” an expression.

Language

Language

 Composition in Java Workbook 2

 Page 6 of 12 LuCE Lugano Computing Education

Research Lab

Conditional Computation: Ternary Operator c ? t : e
Sometimes we have to take decisions. Under some conditions we need to produce
some value, otherwise we need to produce some other value. In Java we can use the
conditional operator for this. This is also called the ternary operator, because it has
three operands (it is the only three-operand operator in Java).

The following expression produces the color red if value is negative, and the color
black otherwise:

value < 0 ? RED : BLACK

Let’s wrap this expression in a method:

public static Color accountingColor(double value) {
 return value < 0 ? RED : BLACK;
}

Write a method that produces an upward-pointing triangle if the value is positive
or zero, and a downward-pointing (i.e., rotated) triangle if the value is negative.
public static Graphic upOrDownIndicator(int value) {

Write a method that produces the String “even” if the value is even, and the String
“odd” if the value is odd (hint: in Java, the modulo operator a % d produces the
remainder of the division a / d; that is, a % 2 will produce either 0 or 1):
public static String evenOrOdd(int value) {

Each of the three operands of the ?: operator is an expression. The first operand is
a condition, an expression that evaluates to true or to false. The value of this op-
erand decides the result of the conditional. If the condition is true, the conditional
produces the result of the second operand. If the condition is false, the conditional
produces the result of the third operand.

The type of the condition must be boolean. The second and third operand can have
any type (e.g., Color, Graphic, String, double, or int), but these two operands must
have the same type. The type of the entire conditional expression corresponds to
the type of the second and third operands – after all, the expression produces what
the second or third operand produces.

Write a method that produces “Times” if a serif font is requested, and “Arial” other-
wise:
public static String fontName(boolean serif) {
 return serif ?
}

Language

 Composition in Java Workbook 2

 Page 7 of 12 LuCE Lugano Computing Education

Research Lab

Type-Checking an Expression
When compiling code, a compiler first parses the code (builds a tree), and then,
for every expression, it checks that it’s plugged together correctly in terms of
types. This is called type-checking. If type-checking fails, you receive a type error
when compiling the program.
Which of the following expressions is type-correct? Complete the table:

Expression (Source) &
Expression Tree

Type
Correct

Explain

1 + 2

Yes 1 is a literal of type int.
2 is a literal of type int.
There is a + operator expecting two
ints, and it produces a result of type
int.

1 + true

No 1 is a literal of type int.
true is a literal of type boolean.
There is no + operator expecting an int
and a boolean.

"Hello" / 2

1 / 2 * 3

Yes 1 is a literal of type int.
2 is a literal of type int.
There is a / operator expecting two
ints,
and it produces a result of type int.
3 is a literal of type int.
There is a * operator expecting two
ints,
and it produces a result of type int.

1 < 2 < 3

rgb(255, 128, 0)

 255 is a literal of type int.
128 is a literal of type int.
0 is a literal of type int.
There is an rgb method expecting three
ints, producing a result of type Color

rectangle(1.0, 2.0,
 true ? RED : GREEN)

 1.0 is a literal of type double.

Language

 Composition in Java Workbook 2

 Page 8 of 12 LuCE Lugano Computing Education

Research Lab

Bounding Box
Each graphic has a tight, axis-aligned bounding box: the rectangle with sides par-
allel to the horizontal and vertical axes enclosing the graphic as tightly as possible.

Draw the bounding boxes around the following graphics. Then indicate the nine
points defined by the corners and midpoints of the bounding box:

rectangle(200, 100, YELLOW)

rotate(45, ellipse(200, 100, CYAN))

rotate(
-30,
circularSector(80, 240, MAGENTA)

)

rotate(
30,
text("upwards", "Helvetica", 40, GREEN)

)

beside(
Toolbelt.circle(100, RED),
Toolbelt.circle(50, BLUE)

)

above(
 circularSector(50, 210, MAGENTA),
 circularSector(50, 210, CYAN)
)

Toolbelt.beside3(
 rotate(0, Toolbelt.square(50, BLACK)),
 rotate(15, Toolbelt.square(50, BLACK)),
 rotate(45, Toolbelt.square(50, BLACK))
)

The last two examples show composite graphics where the component graphics
don’t touch each other. E.g., the above method composes the two circular sectors
into a graphic such that their two bounding boxes touch. Two bounding boxes
touching each other does not mean that the two graphics inside those two bound-
ing boxes will also touch each other.

Library

 Composition in Java Workbook 2

 Page 9 of 12 LuCE Lugano Computing Education

Research Lab

Compose and the Invisible Pinning Position
Besides beside, above, and overlay, JTamaro also offers a fourth binary composition
method:

Graphic compose(Graphic top, Graphic bottom)

Let’s see what compose produces, and how it compares to overlay:

compose(wide(), tall()) overlay(wide(), tall())

They seem to do the same thing! But there is a difference.

To see it, we need to understand a previously invisible aspect of graphics: each
graphic has a pinning position. Here are the primitive graphics with their bounding
box (blue axis-aligned rectangle enclosing the graphic), the nine points defined by
the bounding box (corners, midpoints), and their pinning positions (black):

rectangle(200, 100, YELLOW)

ellipse(200, 100, YELLOW)

triangle(200, 100, 90, YELLOW)

text("up!", "Helvetica", 150, YELLOW)

circularSector(100, 210, YELLOW)

Sometimes the pinning position lies on a bounding box point, sometimes not.

Library

 Composition in Java Workbook 2

 Page 10 of 12 LuCE Lugano Computing Education

Research Lab

Creating a Graphic with a Different Pinning Position
The compose method overlays two graphics at their pinning positions. If you want to
control how they get aligned, you can first create graphics with the necessary pin-
ning positions and then compose those.
Graphic pin(Point point, Graphic graphic)

JTamaro provides some names for the nine points defined by a bounding box. These
names denote values of type Point:
TOP_LEFT TOP_CENTER TOP_RIGHT
CENTER_LEFT CENTER CENTER_RIGHT
BOTTOM_LEFT BOTTOM_CENTER BOTTOM_RIGHT

Write the expressions that generate the described graphics. Consider the pinning
position of a primitive graphic. There might be no need to call pin at all.

pin(TOP_CENTER,
rotate(45,
 Toolbelt.square(100, BLUE)
)

)

A green 200-by-100 ellipse
pinned in its center.

A red circular sector with ra-
dius 80 and a 120-degree
angle that is rotated so its
tip faces upward, and pin it
at the bottom center.

For the following expressions, draw the pinning position on the graphic:

pin(BOTTOM_CENTER,
rotate(30,
 ellipse(200, 100, YELLOW)
)

)

rotate(180,
 pin(BOTTOM_CENTER,
 rotate(30,
 Toolbelt.square(100, YELLOW)
)
)

)
You can imagine that for doing rotate, JTamaro pushes a pin at the pinning position
and rotates the graphic around that pin.

Library

 Composition in Java Workbook 2

 Page 11 of 12 LuCE Lugano Computing Education

Research Lab

Pin and Compose – General and Powerful
Using wide, tall, pin, and compose, write expressions that create these graphics:

compose(
 pin(TOP_LEFT, wide()),
pin(TOP_LEFT, tall())

)

compose(

compose(

compose(

Draw the graphic produced by the following expression:
 compose(

 pin(BOTTOM_RIGHT, wide()),
pin(TOP_LEFT, tall())

)

 compose(
pin(TOP_LEFT, tall()),

 pin(BOTTOM_RIGHT, wide())
)

Draw the bounding boxes and the pinning position of each of the above composite
graphics (i.e., all six results of calling compose on this page).
compose is a more general composition operation than beside, above, or overlay.
Why? Because if all we had was compose and pin, we could implement beside, above,
and overlay ourselves! The graphics produced by beside, above, and overlay have
their pinning positions in their center. Here is how we could implement our own
beside method:
public static Graphic myBeside(Graphic left, Graphic right) {
return pin(CENTER,
 compose(
 pin(CENTER_RIGHT, left),
 pin(CENTER_LEFT, right)
)
);

}

Library

 Composition in Java Workbook 2

 Page 12 of 12 LuCE Lugano Computing Education

Research Lab

Using compose and pin, write your own version of the above and overlay methods:
public static Graphic myAbove(

public static Graphic myOverlay(

How general is compose? Let’s determine what compose(w, t) can produce with dif-
ferently pinned arguments, assuming w is a red wide 80-by-32 rectangle, and t is a
blue tall 32-by-80 rectangle. Sketch some of the 81 possible results:

w →
t

TL

TC TR

CL

C

CR

BL

BC

BR

 TL

 TC

 TR

 CL

 C

 CR

 BL

 BC

 BR

