
 Composition in Java Workbook 3

 Page 1 of 12 LuCE Lugano Computing Education

Research Lab

Repetitive Data
Student name:

TA signature:

Concepts Check off understood concepts, connect related concepts, label connections
Note: Add the following three concepts to the map: Type, Object, and Cons Cell.
Connect them and connect everything else as well.

Make sure you can explain each concept and each connection, you can provide ex-
amples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
String • Character • Integer • Double • Boolean • Sequence • empty • cons • first •
rest • isEmpty • of • replicate • range

◼ Value

◼ Expression

◼ Language◼ Library

◼ Class

◼ Wrapper Class

◼ Generic
◼ Type

Parameter

◼ Type- Checking ◼ Type Error◼ Primitive Type

◼ Type System

defines

prescribes rules for

◼ Sequence

◼ Element ◼ Empty Cell

◼ construct ◼ deconstruct

◼ Abstraction

◼ Field

◼ Instance

◼ Member

◼ Record

◼ Method

◼ static

◼ Call

of

is a

 Composition in Java Workbook 3

 Page 2 of 12 LuCE Lugano Computing Education

Research Lab

Abstraction – Turn Differences into Parameters
Code duplication is bad. If we see two pieces of code that are the same, we should
eliminate one. But what if the two pieces have a lot of similarities, but do have a
few differences?

Throughout this course we will learn to abstract over three different kinds of
things: over expressions, over types, and over behaviors. For now, we focus on ab-
straction over expressions.

Abstraction over Expressions
Here is some code that builds two houses side-by-side:
beside(redHouse(), blackHouse())

And here are two methods that construct a house:
public static Graphic redHouse() {
 return above(
 triangle(200, 200, 60, RED),
 rectangle(200, 200, RED)
);
}

public static Graphic blackHouse() {
 return above(
 triangle(200, 200, 60, rgb(0, 0, 0)),
 rectangle(200, 200, rgb(0, 0, 0))
);
}

Do you feel the pain? You should! So many similarities, and so few differences!
Highlight the differences in the above code.

Let's eliminate the code duplication. Replace the two methods above with a single
method that can deal with both requests. To do this, simply turn the differences
(between the two methods) into parameters:
public static Graphic

Now use your new method to build the two side-by-side houses:

Do you feel the joy? That's the joy of abstraction!

In this specific example, you abstracted over different expressions. You wrote a
method that can construct a house of any color. The specific color can be pro-
vided to the method via its parameter. This is much more generally usable. You (or
others) can now use your method to easily build all kinds of colorful houses!

Language

 Composition in Java Workbook 3

 Page 3 of 12 LuCE Lugano Computing Education

Research Lab

Primitive Types vs. Classes
Some types are primitive types. They are baked into the Java language. In Java, you
cannot create your own primitive types. In Java, the names of primitive types all
start with a lowercase letter.

Other types are classes. They are part of some library. You can create your own
types, because you can create your own classes. For example, the type String is
part of the Java standard library (the Java API). The types Color, Graphic, and
Sequence are not part of the Java standard library; they are part of the JTamaro li-
brary we created for this course. By convention, Java developers use uppercase let-
ters as the first character of class names.

Complete the “primitive” column in the table in Workbook 2.

Wrapper Classes
In Java some types are primitive types, other types are classes. For reasons we will
later see, for each primitive type Java provides a corresponding class (known as a
wrapper class):

Wrapper Class Primitive Type
Character char
Integer int
Double double
Boolean boolean

Java automatically converts between wrapper classes and the corresponding prim-
itive types. For example, if a parameter has type Integer, you can pass an argument
of type int; or if a parameter has type char, you can pass an argument of type Char-
acter.

Assume the following methods:

public static int one() { … }
public static Integer two() { … }
public static Integer add(Integer a, Integer b) { … }
public static int subtract(int a, int b) { … }

Draw an expression tree of the following expression. Annotate nodes with types:
subtract(add(one(), two()), subtract(two(), one()))

Language

 Composition in Java Workbook 3

 Page 4 of 12 LuCE Lugano Computing Education

Research Lab

Creating Our Own Classes
Besides classes like Character, Integer, Double, Boolean, and String, that are part
of the Java library, developers can create their own classes. Let’s assume we want
to model vectors in two-dimensional space. We could define a class for that. Let’s
name it Vector:

record Vector(double x, double y) {
}

The above Vector is a special kind of class: a record. A record is a convenient way
to define a class, without having to write much code. The above definition states
that Vectors are objects containing two fields: two double values named x and y.

Given the above definition, we can now construct values of that class:

new Vector(-100.0, 200.0)
new Vector(0.0, 0.0)

Those values are objects. We created two objects of type Vector. We can draw the
two objects as follows:

Given an object, we can deconstruct it (access its fields). Records automatically de-
fine methods to get the values of their fields (these methods are known as getters):

new Vector(100.0, 200.0).x()

We say that “objects are instances of classes”. For example, the object created by
the expression new Vector(1.0, 2.0) is an instance of class Vector.

Because classes are types, we can write methods that take Vectors as parameters
and return a Vector as a return value. Complete the given methods:

public class Vectors {

 public static Vector add(Vector a, Vector b) {
 return new Vector(a.x() + b.x(), a.y() + b.y());
 }

 public static Vector scalarMultiply(double s, Vector a) {
 return new Vector(a.x() * s, a.y() * s);
 }

 public static double dotProduct(Vector a, Vector b) {
 return
 }

}

Vector

-100.0
double

x

200.0
double

y

Vector

0.0
double

x

0.0
double

y

Language

 Composition in Java Workbook 3

 Page 5 of 12 LuCE Lugano Computing Education

Research Lab

Static Method Declarations
In Java, methods have to be declared inside classes. We say a method is a member
of a class. Here are a few classes with some static methods you may have seen:

public class Toolbelt {
 public static String firstName() {…}
 public static Graphic beside3(Graphic g1, Graphic g2, Graphic g3) {…}
}

public class Demo {
 public static Color purpleColor() {…}
}

public class Heart {
 public static Color purpleColor() {…}
}

public class DoubleBlackDiamond {
 public static Graphic blackDiamond(double side) {…}
 public static Graphic doubleBlackDiamond(double side) {…}
}

public class Graphics {
 public static Graphic rectangle(double w, double h, Color c) {…}
 public static Graphic beside(Graphic left, Graphic right) {…}
}

public class Colors {
 public static Color rgb(int red, int green, int blue) {…}
}

In the above code we highlight the ClassName in each class declaration, and the
methodName in each method declaration.

If we write purpleColor(), which method would be called?

Static Method Invocations
In the past we saw that we can call a static method with or without specifying the
class name. Here are two static method invocation expressions, both calling the
same method. Annotate each expression tree node with its result type:
rgb(…, …, …) Colors.rgb(…, …, …)

Note: The former only compiles if the expression is inside the corresponding class
(in this case, inside class Colors), or if the method name has been imported using
a static import. We will discuss the details of imports in the future.

Language

Language

 Composition in Java Workbook 3

 Page 6 of 12 LuCE Lugano Computing Education

Research Lab

Class Instance Creations, Instance Method Invocations
When introducing record classes above, we encountered two new kinds of expres-
sions. Class instance creation expressions consist of the keyword new followed by
the name of the class, and a list of constructor arguments. Instance method invo-
cation expressions consist of a hole (for a subexpression producing an object), a
dot, the name of the method, and a list of method arguments. Annotate each ex-
pression tree node with its result type:
new Vector(…, …) ….x()

Notice how instance method invocations differ from static method invocations?

Draw the expression tree for the following expression. Annotate nodes with types
and values. To show values of record classes (objects), draw the object diagram:
Vectors.scalarMultiply(new Vector(1.0, 2.0).x(), new Vector(3.0, 4.0))

Looking Inside Objects with Object Diagrams
Let’s look at how we visualize objects…

The red rounded rectangle shows the object. The black label at the top shows the
type of the object (Vector). An object may contain fields, which are shown as white
rectangles inside the object. Each field has a name (on the left, e.g., x), a type
(above, e.g., double), and a value (inside the white rectangle, e.g., 200.0).

public record Interval(int start, int end) {
}
public static Interval move(
 Interval i, int shift) {
 return new Interval(
 i.start() + shift,
 i.end() + shift
);
}

Draw the object diagram of
the result of:
move(new Interval(1,2), 3)

Vector

-100.0
double

x

200.0
double

y

Vector

0.0
double

x

0.0
double

y

Language

Language

 Composition in Java Workbook 3

 Page 7 of 12 LuCE Lugano Computing Education

Research Lab

Sequence – A Recursive Data Structure
A sequence is similar to a list. We can have a sequence of integers, or a sequence
of strings, or a sequence of some other type of element. A sequence can be empty
(containing zero elements), it can contain one element, or it can contain any num-
ber of elements. We will learn soon that it even can contain an infinite number of
elements!

Sequence is a generic class. When writing the type of some sequence, we have to
write Sequence<T>, where T stands for the type of element the sequence contains.

Write the type of the following:

Type in Java Description of Type
Sequence<Integer> A sequence of integer numbers
 A sequence of Strings
 A sequence of floating-point numbers
 A sequence of Boolean values
 A sequence of colors
 A sequence of graphics

The T above is the type parameter of the generic class. It can be replaced with al-
most any type. However, unfortunately, in Java, type parameters cannot be set to
primitive types. Sequence<int> is not a legal type in Java.

Can we have a sequence containing the following type of elements?

☐ double
☐ Character
☐ Boolean
☐ String
☐ Color
☐ Graphic

Write the signature of a method named colorDots that takes a sequence of colors
and returns a sequence of graphics. There’s no need to implement the method.
We will do that later. For each color in the sequence, the method might produce a
circle in that color.

public static

Write the signature of a method named besides that takes a sequence of graphics
and returns a graphic. There’s no need to implement the method. We will do that
later. The method will combine the graphics in the sequence besides each other
into a single graphic.

public static

Library Language

 Composition in Java Workbook 3

 Page 8 of 12 LuCE Lugano Computing Education

Research Lab

Constructing Sequences
A value of type Sequence is either an empty cell, or it is a cons cell containing an
element and another value of type Sequence.

Diagram of the
sequence of integers

30, 42, 13.

These two methods produce a sequence of something:

<T> Sequence<T> empty()

<T> Sequence<T> cons(T first, Sequence<T> rest)

The <T> at the beginning specifies that for the given method, T is a type parameter.
This means the method will produce a sequence of elements of type T, for any type
T.

Here is an expression (a method invocation) that produces an empty sequence, a
sequence containing no elements, a sequence of length 0:

empty()

Here is an expression that produces a Sequence<String> with one element, the
String value "Hi". This sequence has length 1.

cons("Hi", empty())

Write expressions that produce the following sequences. Draw an object diagram
for each sequence.

The two elements "Up" and "Down", such that the first element is "Up", and the sec-
ond element is "Down":

The two floating-point numbers 0.0 and 0.1, in that order:

The colors RED, GREEN, and BLUE, in that order:

Cons Cell

30 42 13

Empty Cell

"Hi"

Library

 Composition in Java Workbook 3

 Page 9 of 12 LuCE Lugano Computing Education

Research Lab

Deconstructing Sequences
Being able to “construct” a sequence is pointless if you cannot do anything with it!
But what can you do with a sequence? For one, you can “deconstruct” it!

While the method cons constructs a cons cell from a first element and a rest, the
methods first and rest deconstruct a cons cell into a first element and a rest.

<T> T first(Sequence<T> sequence)

<T> Sequence<T> rest(Sequence<T> sequence)

What happens if we try to deconstruct an empty sequence? If the sequence we want
to deconstruct is not a cons cell, then we have a problem! We cannot deconstruct
the empty cell! Thus, we need a way to tell whether a sequence is empty:

<T> boolean isEmpty(Sequence<T> sequence)

If isEmpty returns true, we know we cannot deconstruct the given sequence: we
cannot call first and we cannot call rest on that sequence, because there is no
cons cell to deconstruct.

Before we deconstruct sequences, let’s first build a few sequences. Let’s assume we
have methods that provide Bill’s, Melinda’s, and Elon’s favorite colors:

public static Sequence<Color> billFavs() {
 return cons(RED, cons(BLACK, cons(YELLOW, empty())));
}

public static Sequence<Color> melindaFavs() {
 return cons(Toolbelt.orange(), empty());
}

public static Sequence<Color> elonFavs() {
 return empty();
}

Let’s draw diagrams for the sequences the following expressions evaluate to:

melindaFavs()
first(melindaFavs())
rest(melindaFavs())
billFavs()
rest(billFavs())

first(rest(billFavs()))

rest(rest(billFavs()))

first(elonFavs())
Are there any problems in evaluating the above expressions?

Library

 Composition in Java Workbook 3

 Page 10 of 12 LuCE Lugano Computing Education

Research Lab

Carefully Deconstructing
Let’s write a method that tells us whether a sequence of colors contains at least
one color. If the sequence is not empty, it contains at least one color:

public static boolean atLeastOneColor(Sequence<Color> colors) {
 return isEmpty(colors) ? false : true;
}

The implementation of the above method can be simplified. Rewrite it:
 return

We can use the atLeastOneColor method to test whether someone has at least one
favorite color. What do the following expressions evaluate to?
atLeastOneColor(billFavs())
atLeastOneColor(melindaFavs())
atLeastOneColor(elonFavs())

Write a method that returns true if the given sequence contains at least two colors,
and that returns false otherwise. Your method is only allowed to call the isEmpty,
first, and rest methods (remember, we can deconstruct a sequence using isEmpty,
first, and rest), and it must use two conditional operators.
public static boolean atLeastTwoColors(Sequence<Color> colors) {

return

}

The above code contained nested conditional operators, which become difficult to
read and understand. Let’s rewrite it. This time you can only use one call to each of
isEmpty and rest. But you are allowed to call the atLeastOneColor() method!
public static boolean atLeastTwoColors(Sequence<Color> colors) {

return

}

Values as Diagrams, Expressions as Trees
Write an expression that creates a sequence of the three characters 'A', 'B', and 'C':

Draw the sequence produced by
this expression as a diagram:

Draw the expression itself as a tree:

Language

Language

 Composition in Java Workbook 3

 Page 11 of 12 LuCE Lugano Computing Education

Research Lab

Constructing Sequences: A More Convenient Way
To create a sequence, we have to write an expres-
sion of nested cons calls:

cons(1, cons(2, cons(3, cons(4, empty()))))

This is painful and verbose.
The of method provides a shortcut:

of(1, 2, 3, 4)

Draw the cons expression as a
tree:

Draw the of expression as a tree:

The above two approaches produce the exact same sequence!

<T> Sequence<T> of(T element, …)

Note that the of method is very special. We have not seen a method like it before:
It supports a variable number of arguments (zero or more).

Write expressions that use the method of to produce a sequence with:

The two elements "Up" and "Down", such that the first element is "Up", and the sec-
ond element is "Down":

The two floating-point numbers 0.0 and 0.1, in that order:

The boolean values true, true, false, and true, in that order:

The strings "S", "M", "L", "XL", in that order:

The colors RED, GREEN, and BLUE, in that order:

A red circle of diameter 40 and a green square of side 40, in that order:

Library

 Composition in Java Workbook 3

 Page 12 of 12 LuCE Lugano Computing Education

Research Lab

Constructing Sequences: Implicitly
We do not need to explicitly enumerate each value of a sequence. JTamaro provides
some methods that can create a complete sequence with a single call.

Replicating a value
The replicate method produces a sequence containing the same value a given
number of times:

<T> Sequence<T> replicate(T element, int count)

replicate("Ciao.", 5)

…produces the same sequence as…

of("Ciao.", "Ciao.", "Ciao.", "Ciao.", "Ciao.")

Now, use replicate and whatever else is needed to produce:

of(10, 10, 10, 10, 10, 10)

of(RED, RED, RED, RED)

of(false, true, true, true, true, true)

The last task was special. How did you do it?

Creating a range of values
The range method works like the one you may have seen in Python:

Sequence<Integer> range(int start, int end, int step)

Complete the following table. Each row needs to contain two expressions that pro-
duce the same value:

With range: With of:
range(5) of(0, 1, 2, 3, 4)
range(1, 3) of(1, 2)
range(0, 10, 2) of(0, 2, 4, 6, 8)
range(10, 0, -2) of(10, 8, 6, 4, 2)
 of(1, 5, 9)
range(0, 5)
range(0, 5, 1)
 of(7, 3, -1)
range(1, 3, 0)
 of()

In some cases, you can express the same of-expression with different range-expres-
sions. Also, some of the above calls to range make no sense.

Library

