
 Composition in Java Workbook 4

 Page 1 of 14 LuCE Lugano Computing Education

Research Lab

Repetitive Computation
Student name:

TA signature:

Concepts Check off understood concepts, connect related concepts, label connections
Add the following three concepts to the map: Recursion, Method, and Expression
Tree. Connect them and connect everything else as well.

Make sure you can explain each concept and each connection, you can provide
examples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
Math • min • max • pow • sqrt • Integer • parseInt • Double • parseDouble • Boolean •
parseBoolean • hsv • hsl • intersperse • concat

◼ Call Site

◼ Call
◼ Return

◼ Dynamic
Call Tree

◼ Depth- First
Traversal

◼ Value

◼ Recursive
Case

◼ Termination
Condition

◼ Base Case
◼ Infinite
Recursion

◼ Stack Frame

◼ Call Stack

◼ Stack
Overflow

◼ Map ◼ Filter

◼ Predicate

◼ Reduce

◼ Neutral
Element

◼ Arity

◼ Overloading

◼ Class

◼ Library

◼ Java
Library

◼ JTamaro
Library

◼ Type
Signature

◼ Operator

◼ Operand

◼ Expression

 Composition in Java Workbook 4

 Page 2 of 14 LuCE Lugano Computing Education

Research Lab

Calls and Returns
The place in a code where we call something is a call site. When you call a method,
its body gets executed, and then it returns to the call site. In the following code,
each call site is highlighted in yellow:

 public static Graphic eye(double diameter) {
 return overlay(
 Toolbelt.circle(diameter * 0.5, BLACK),
 Toolbelt.circle(diameter, WHITE)
);
 }

 public static Graphic eyes(double diameter) {
 return beside(
 eye(diameter),
 eye(diameter)
);
 }

Which claims about the execution of the above code are correct, assuming the
execution starts with the call eyes(100)?

True False Claim
☐ ☐ Method beside gets called before method eye gets called
☐ ☐ Method beside returns before any of the calls to method eye return
☐ ☐ Method beside returns after all of the calls to method eye return
☐ ☐ Method beside gets called after all of the calls to method eye return
☐ ☐ Method overlay gets called after method beside gets called
☐ ☐ Method Toolbelt.circle gets called after method eye gets called
☐ ☐ Method Toolbelt.circle gets called twice
☐ ☐ Method eye gets called twice
☐ ☐ Method overlay gets called twice
☐ ☐ Including the call to eyes, a total of 10 method calls happen

Each call is paired with a return. And calls and returns are nested.

Dynamic Call Trees
Because call-return pairs are properly nested, we can represent the sequence of
calls and returns being executed as a tree. That is the dynamic call tree.

In a dynamic call tree, each call-return pair (we often just say "each call") is
represented by a node. The nodes are labeled with the name of the method and
often also with the values of the arguments for that call. The root of the call tree
represents the method we initially call.

The dynamic call tree provides a global picture of what happens during execution.
It focuses on method calls and returns. It does not show what happens inside each
method, except that it calls some methods. It does not show operators being
evaluated. It is a tree, but it is very different from an expression tree.

In this course we draw dynamic call trees from left to right (root on the left).

Language

Language

 Composition in Java Workbook 4

 Page 3 of 14 LuCE Lugano Computing Education

Research Lab

Here are three example methods:

public static String doubt() {
 return " ... or maybe not???";
}

public static String exclaim(String statement) {
 return statement + "!!!";
}

public static String conversation(String question, String answer) {
 return question + " " + exclaim(answer) + doubt();
}

Below is the dynamic call tree for the call:
conversation("Pineapple on pizza?", "Yes")

The program execution corresponds to the depth-first traversal of the call tree. We
can visualize that traversal with a line. We also can show the return values flowing
back (i.e., towards the left) when returning from each call.

There is a return paired with every call (unless the program "crashes" before the
call returns).
Given the add and sum methods below, draw the dynamic call tree of the call sum(1,
2, 3, 4), show the traversal with a line, and show the return value of each call.

public static int add(int a, int b) {
 return a + b;
}

public static int sum(int a, int b, int c, int d) {
 return add(add(a, b), add(c, d));
}

 Composition in Java Workbook 4

 Page 4 of 14 LuCE Lugano Computing Education

Research Lab

Given the eye and eyes methods from before, draw the dynamic call tree of the call
eyes(100), show the traversal with a line, and show the return value of each call.

Dynamic Call Tree vs. Expression Tree

How does a dynamic call tree differ from an expression tree?

Call
Tree

Expr.
Tree

What?

 Shows a single expression
 Shows static information (is not about one specific execution)
 Shows dynamic information (is about one specific execution)
 Shows all operations
 Shows only calls/returns
 Can show information across multiple methods
 Shows all the details corresponding to one expression

An expression tree is a tree representing one expression as written in source code.
A dynamic call tree is a tree representing all calls in an execution.

Watch out! Do not confuse them!
They are both trees, and they both include method calls, but they are fundamentally
different. To help you, we draw:

• Dynamic call trees horizontally, from the left to the right
• Expression trees vertically, from the top to the bottom

Language

 Composition in Java Workbook 4

 Page 5 of 14 LuCE Lugano Computing Education

Research Lab

Amusement Park Line
You get to your favorite ride in an amusement park, but there is a very long line.
You'd like to know how many people are in front of you in the line, so that you can
estimate how long you will have to wait.

You could walk along the entire line, to count each person. Or you could be lazy.
How can you find out how long the line is with minimal effort?

Sure, you could send a friend to walk along the whole line and to count everyone.
But all your friends want to be lazy, too. You come up with a clever plan: you ask
the person on your right (in the above picture) how many people are in the line that
starts with them and goes all the way to the right. Assume that person is lazy as
well. How will they figure it out? They will ask the same question to the person on
their right. And so on and so on. Until the question reaches the person at the right
edge. There is nobody in front of that person. So that person answers 1. The person
on their left computes 1 (themselves) + 1 (the answer obtained from the person on
their right), and answers 2. And so on.

If we translate this to code, and we represent a line of persons as a
Sequence<Person> (assuming there is a class Person somewhere):

public static int count(Sequence<Person> persons) {
return 1 + (// me +
 isEmpty(rest(persons)) // nobody on my right?

 ? 0 // nobody (on my right)
 : count(rest(persons)) // rest of persons (on my right)
);
}

What happens if we call count(empty())?

Improve the count method so that it works for empty sequences as well:
public static int count(Sequence<Person> persons) {

}

Language

 Composition in Java Workbook 4

 Page 6 of 14 LuCE Lugano Computing Education

Research Lab

Recursive Methods
The methods on the previous page are recursive; they call themselves. E.g., method
count calls… method count. You see that call in the body of the method:
public static int count(Sequence<Person> persons) {
 return isEmpty(persons) // termination condition
 ? 0 // base case
 : 1 + count(rest(persons)); // recursive case
}

The recursive call site is in the recursive case of the conditional. The condition in
the conditional expression serves as a termination condition: it determines whether
you reached the base case of the recursion.
Assume that al and ed are names of values of type Person. Draw the dynamic call
tree of demo(al, ed), including the traversal line and return values:

public static int demo(Person a, Person b) {
 return count(cons(a, cons(b, empty())));
}

Here is another recursive method:
public static int eternity() {
 return eternity(); // recursive case
}

What happens when you run this?

In theory, calling this method would lead to an infinite recursion. Every call of the
method would lead to another call of the method. None of the calls would ever
return.

In practice, in most programming languages, calling this method will eventually
"crash" the program. Why? Because every call will allocate a new stack frame (a
piece of memory necessary for the method to execute) on the call stack and given
that we just keep calling and never get to return, eventually we will run out of
memory for our call stack. In Java, this leads to a stack overflow.

The method does not have a termination condition. It only has a recursive case—
there's really no "case"; there's no decision with multiple possibilities; it's always
just going to call itself.

Language

 Composition in Java Workbook 4

 Page 7 of 14 LuCE Lugano Computing Education

Research Lab

Processing Sequences
The probably most common tasks with a sequence are:

Mapping Filtering Reducing

All tasks start with a given sequence of some type () of elements.
Mapping Sequences
When we map, we want to transform (i.e., to map) each element of the given
sequence into some other element. The result is a sequence with a potentially
different type () of elements. Here is an example to map from colors to colored
dots:

public static Sequence<Graphic> colorsToDots(Sequence<Color> colors) {
 return isEmpty(colors) // termination condition
 ? empty() // base case
 : cons(// recursive case
 Toolbelt.circle(100, first(colors)), // map 1 element
 colorsToDots(rest(colors)) // map rest
);
}

When mapping from one sequence to another sequence, we essentially map each
element into something else. Thus, we can implement the mapping of an
individual element as a separate method:

public static Sequence<Graphic> colorsToDots(Sequence<Color> colors) {
 return isEmpty(colors) // termination condition
 ? empty() // base case
 : cons(// recursive case
 colorToDot(first(colors)), // map 1 element
 colorsToDots(rest(colors)) // map rest
);
}

public static Graphic colorToDot(Color color) {
 return Toolbelt.circle(100, color); // map 1 element
}

Write a method that maps an angle into a black size-20 square rotated by angle:
public static Graphic angleToR(int angle) {
 return
}

Write a method that maps a sequence of angles into a sequence of squares rotated
by those angles:
public static Sequence<Graphic> anglesToRs(Sequence<Integer> angles) {
 return

}

neutral element result

Language Library

 Composition in Java Workbook 4

 Page 8 of 14 LuCE Lugano Computing Education

Research Lab

Write a method that maps a sequence of numbers into a sequence of negated
numbers (multiply each number by -1). Note that here the element type is the same
for the sequence passed as an argument and the returned sequence:
public static Sequence<Double> negate(Sequence<Double> numbers) {
 return

}

Write a method that maps a sequence of strings into a sequence of integers, using
the method Integer.parseInt to map an individual string to an integer:
public static Sequence<Integer> parseInts(Sequence<String> strings) {
 return

}

Filtering Sequences
When we filter, we want to keep only elements that fulfill a certain condition (the
predicate). The result is a sequence of the same type () of elements. Here is an
example to get all the positive numbers of the given sequence:

public static Sequence<Integer> positives(Sequence<Integer> numbers) {
 return isEmpty(numbers) // termination condition
 ? empty() // base case
 : (// recursive case
 first(numbers) >= 0 // predicate
 ? cons(first(numbers), positives(rest(numbers))) // keep
 : positives(rest(numbers)) // drop
);
}

This method deconstructs the given sequence and constructs the resulting
sequence. The recursive case handles a non-empty sequence. It looks at the filter
condition to determine whether to produce a sequence with or without the current
element.

Write a method that gets all the non-empty (non-zero-length) strings from the given
sequence, assume there is a method len(String) you can use as predicate:
public static Sequence<String> nonEmpty(Sequence<String> strings) {

}

 Composition in Java Workbook 4

 Page 9 of 14 LuCE Lugano Computing Education

Research Lab

Reducing Sequences
When we reduce a sequence, we combine all the elements of the given sequence
into one thing of a possibly different type ().

To reduce, we start with an initial value, the so-called neutral element. Then we
combine that value with the first element of the sequence. Then we combine that
intermediate result of that with the second element of the sequence, and so on,
until we combine the intermediate result with the last element of the sequence and
end up with the final result.

Here is an example reduction, to compute the product of a sequence of numbers:

public static Integer product(Sequence<Integer> numbers) {
return isEmpty(numbers)
 ? 1
 : first(numbers) * product(rest(numbers));

}

Here is another example reduction, to join a sequence of strings:

public static String join(Sequence<String> strings) {
return isEmpty(strings)
 ? ""
 : first(strings) + join(rest(strings));

}

Complete this third example reduction, to put above a sequence of graphics:

public static Graphic aboves(Sequence<Graphic> graphics) {
return isEmpty(graphics)
 ?
 :

}

Complete the following table to summarize the three reductions seen so far:

Reduction Type of
element ():

Neutral
element:

Combining
operation:

Type of
result ():

product
join
aboves

A value I is a neutral element for a binary operation ⊕, if a ⊕ I = a = I ⊕ a. The
neutral element of the * is 1, because multiplying something by 1 doesn't change it.
The same idea applies to + for strings and above for graphics.

In reductions, the neutral element, all the intermediate results, and the final result
have the same type (). However, the type of the elements of the sequence ()
does not need to be the same.

neutral element result

 Composition in Java Workbook 4

 Page 10 of 14 LuCE Lugano Computing Education

Research Lab

A whole pipeline using filter, map, and reduce
Let's build a pipeline to turn a sequence of angles into a graphic, by filtering,
mapping, and reducing sequences. First, create a sequence of angles. Then filter
that sequence to eliminate illegal angles (outside the interval [0, 360[). Then turn
that sequence of legal angles into a sequence of colors (where the color's hue
corresponds to the angle). Then turn that sequence of colors into a sequence of
graphics (colored dots), and then reduce that sequence of graphics into a single
graphic (place them beside each other).

besides(// reduce
 colorsToDots(// map
 anglesToColors(// map
 legalAngles(// filter
 angles() // generate
)
)
)
)

Expression Tree
Draw the expression tree of the above expression.

Produce a list of angles

public static Sequence<Integer> angles() {
 return range(-120, 120, 15);
}

Filter the list of angles, keeping only the legal ones

public static Sequence<Integer> legalAngles(Sequence<Integer> numbers) {
 return isEmpty(numbers)
 ? empty()
 : (
 first(numbers) >= 0 & first(numbers) < 360
 ? cons(first(numbers), legalAngles(rest(numbers)))
 : legalAngles(rest(numbers))
);
}

 Composition in Java Workbook 4

 Page 11 of 14 LuCE Lugano Computing Education

Research Lab

Map one angle into one color (with angle as hue)

public static Color angleToColor(int angle) {
 return hsv(angle, 1, 1);
}

Map a sequence of angles into a sequence of colors (with angles as hues)

public static Sequence<Color> anglesToColors(Sequence<Integer> angles) {
 return isEmpty(angles)
 ? empty()
 : cons(
 angleToColor(first(angles)),
 anglesToColors(rest(angles))
);
}

Map one color into one dot

public static Graphic colorToDot(Color color) {
 return Toolbelt.circle(100, color);
}

Map a sequence of colors into a sequence of graphics (colored dots)

public static Sequence<Graphic> colorsToDots(Sequence<Color> colors) {
 return isEmpty(colors)
 ? empty()
 : cons(
 colorToDot(first(colors)),
 colorsToDots(rest(colors))
);
}

Reduce a sequence of graphics into a single graphic (with beside)

public static Graphic besides(Sequence<Graphic> graphics) {
 return isEmpty(graphics)
 ? emptyGraphic()
 : beside(
 first(graphics),
 besides(rest(graphics))
);
}

Map, filter and reduce are common patterns of computation. In a future workbook,
we will abstract over these patterns, so that they can be implemented once for all
and then conveniently used.

 Composition in Java Workbook 4

 Page 12 of 14 LuCE Lugano Computing Education

Research Lab

Operators
We encountered quite a few operators. Here is a summary, and a few important new
ones, grouped by their arity (number of operands):
Unary Operators (One Operand)
Arithmetic

Operator Type Signature Description
+ int ⟶ int

double ⟶ double
- int ⟶ int Negation

double ⟶ double Negation
Logical

Operator Type Signature Description
! boolean	 ⟶ boolean Negation

Binary Operators (Two Operands)
Arithmetic

Operator Type Signature Description
+ int, int ⟶ int Addition

double, double ⟶ double Addition
- int, int ⟶ int Subtraction

double, double ⟶ double Subtraction
* int, int	 ⟶ int Multiplication

double, double ⟶ double Multiplication
/ int, int ⟶	 int Division

double, double ⟶	 double Division
% int, int ⟶	 int Remainder

Logic
Operator Type Signature Description

& boolean, boolean ⟶ boolean And
&& boolean, boolean ⟶ boolean And (short-circuit)
| boolean, boolean ⟶ boolean Or
|| boolean, boolean ⟶ boolean Or (short-circuit)

String
Operator Type Signature Description

+ String, String ⟶ String Concatenation
Comparison

Operator Type Signature Description
< int, int ⟶ boolean Less than

double, double ⟶ boolean Less than
<= int, int ⟶ boolean Less than or equal

double, double ⟶ boolean Less than or equal
== int, int ⟶	 boolean Equal
>= int, int ⟶	 boolean Greater than or equal

double, double ⟶	 boolean Greater than or equal
> int, int ⟶	 boolean Greater than

double, double ⟶	 boolean Greater than

Language

 Composition in Java Workbook 4

 Page 13 of 14 LuCE Lugano Computing Education

Research Lab

Ternary Operators (Three Operands)
Conditional
This operator exists for any type T.

Operator Type Signature Description
? : boolean, T, T ⟶ T If…Then…Else

For example, when the then and else branches are Graphic-producing expressions,
the type signature of the conditional operator is

boolean, Graphic, Graphic ⟶ Graphic

Does it make sense to use boolean for T, like in the following expression?
condition ? true : false

We can see that some operators are overloaded. For example, there is a version of
< for ints and a version for doubles.

Overloading means you have one name (or symbol, or operator, …) that can mean
multiple different things.

Methods
Besides many operators, we also encountered quite a few methods. Methods are
bundled into classes, and classes are packaged into libraries.

Methods from the Java Library
The following are some methods provided as part of Java; they are part of the Java
library, which you get when you install Java:

Method Type Signature Description
Math.min int, int ⟶ int Minimum

double, double ⟶ double Minimum
Math.max int, int ⟶ int Maximum

double, double ⟶ double Maximum
Math.pow double, double ⟶	 double Power xy
Math.sqrt double ⟶	 double Square root √
Integer.parseInt String ⟶	 int Convert String to int
Double.parseDouble String ⟶	 double …to double
Boolean.parseBoolean String ⟶	 boolean …to boolean

Method Math.min is overloaded: there is a version of the method for ints, and
another version of the method for doubles. Math.max is overloaded as well.

Note that in Java, all methods are defined in some class. When we write Math.min,
we mean the method named min in the class named Math.

To call a method, we either write methodName() or ClassName.methodName(). The
former only works when the call site is inside the same class as the method we call,
or when we use a static import (like we do in labs; we will explain that later).

Library

 Composition in Java Workbook 4

 Page 14 of 14 LuCE Lugano Computing Education

Research Lab

Methods from the JTamaro Library
Many of the methods we used are not part of the Java library, but they were written
by us and packaged in the JTamaro library. Complete the following table:

Method Type Signature
Graphics.rectangle ⟶
Graphics.triangle ⟶
Graphics.ellipse ⟶	
Graphics.circularSector ⟶	
Graphics.text ⟶	
Graphics.emptyGraphic ⟶	
Graphics.rotate ⟶	
Graphics.overlay ⟶	
Graphics.above ⟶	
Graphics.beside ⟶	
Graphics.compose ⟶	
Graphics.pin ⟶	
Colors.rgb ⟶	
Colors.hsv ⟶	
Colors.hsl ⟶	
Sequences.empty ⟶	
Sequences.cons ⟶	
Sequences.first ⟶	
Sequences.rest ⟶	
Sequences.isEmpty ⟶	
Sequences.of ⟶	
Sequences.replicate ⟶	
Sequences.range ⟶	
Sequences.intersperse ⟶	
Sequences.concat ⟶	

Note: Color.hsv and hsl were introduced in slides in Week 4, Lesson 1. Sequences.intersperse and concat were introduced
in Lab 3.

Describe the pattern you see in terms of the classes the methods are in, and the
type signatures of the methods (there are a couple of exceptions to the pattern):

The type signatures of operators and methods are enormously helpful! They guide
you in plugging together expressions. Always look at the types to see what can be
composed!

