
 Composition in Java Workbook 5

 Page 1 of 9 LuCE Lugano Computing Education

Research Lab

Instance Fields, Methods, Type Casts
Student name:

TA signature:

Object = Data + Behavior

Concepts Check off understood concepts, connect related concepts, label connections
Add the following three concepts to the map: Field, Call, and Widening. Connect
them and connect everything else as well.

Make sure you can explain each concept and each connection, you can provide
examples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
There are no new names this week

 Composition in Java Workbook 5

 Page 2 of 9 LuCE Lugano Computing Education

Research Lab

Java Classes & Packages, Source Files, Class Files, Directories
In Java each class usually is stored in a separate file. For example, a class named
Pacman is stored in a file with the name Pacman.java. This is the source file, the file
containing the source code. Once you compile the class (by clicking some button in
the IDE, or by running javac Pacman.java on the command line), the Java compiler
creates a file containing the compiled bytecode of your class (e.g., file
Pacman.class). This is the class file.

Complete the table:

Class Name Source File Name Class File Name
Tile
 WorldState.java

Packages
In Java, classes can be organized into packages. So far, the classes we wrote in
workbooks were in the "unnamed package", the classes we wrote in labs were in
package lab, and the JTamaro classes we used were in package jtamaro.en. A
package in the Java language corresponds to a directory in the file system. Given
that we have a package jtamaro.en, there must be a corresponding directory.
Indeed, there is a directory jtamaro/en, hidden away somewhere.

To put a class into a package, we have to:
• Save the source/class file in the corresponding directory
• Put a package declaration such as package lab; at the start of the source file

To refer to class Pacman that is inside a package game, we can use the fully-qualified
class name, game.Pacman. There will be a file Pacman.java inside the directory game.

Complete the table:

Package
Name

Unqualified
Class Name

Fully-Qualified Class
Name

Directory + Source File
Name

- World World World.java
lab Editor lab.Editor lab/Editor.java
jtamaro.en Graphic

What is the package declaration at the top of JTamaro's Graphic.java?

Import
We have several options to refer to a class located in a named package:
• If we are located in the same package as the class, we can just use the

unqualified class name (e.g., Pacman)
• We can use the fully-qualified class name (e.g., game.Pacman)
• Preferred way: We can import the class (e.g., import game.Pacman;) and then

use the unqualified class name (e.g., Pacman)
• We can import all classes of the package (e.g., import game.*;) and then use

the unqualified class name (e.g., Pacman)
Write an import declaration to import all classes in package jtamaro.en:

 Composition in Java Workbook 5

 Page 3 of 9 LuCE Lugano Computing Education

Research Lab

Review: Structure, Type, and Value of Expressions
public static boolean lt(double v1, double v2) {
 return v1 < v2;
}

public static String compare(int a, int b) {
 return a > b ? "greater than" : (lt(a, b) ? "less than" : "equal to");
}

Draw the expression tree for the highlighted expression, give the types for each
node, and show the values for each node that is evaluated when the method is
called with compare(1, 1):

Draw the expression tree again, give the types for each node, and show the values
for each node that is evaluated when the method is called with compare(1, 0):

Which of the following claims are true?
❏ The structure and node contents of the expression tree is the same, no matter

whether and in what state the method might get called.
❏ The types of each node in the expression tree are the same, no matter

whether and in what state the method might get called.
❏ The values of each node in the expression tree are the same, no matter

whether and in what state the method might be called.

In statically-typed languages like Java (or C, C#, C++, Scala, Haskell, …) the types are
determined statically, that means, when the code is compiled, before it is executed,
before we know the values the parameters will have.

 Composition in Java Workbook 5

 Page 4 of 9 LuCE Lugano Computing Education

Research Lab

Type Conversion
Java provides different type conversion approaches. It auto-boxes primitive types
into wrapper types, and it auto-unboxes wrapper types into primitive types.
Moreover, it automatically widens “narrower” numerical types into “wider” types,
e.g., it accepts an expression of type int in a hole of type double, so we can write
expressions like rectangle(100, 50.5, RED), even though 100 is of type int. Java
also provides methods to convert from Strings to some other types (e.g.,
Integer.parseInt), or from other types to Strings (e.g., Integer.toString).

Besides the above ways to convert between types, Java also provides cast operators
(which are part of the Java language). For example, the following expression casts
the double value 3.14 to type int:

(int) 3.14

When casting a value to a different type, some information may get lost. In the
example above, the expression evaluates to the int value 3. The digits after the
comma are lost.

The cast operators are unary operators. They are written before their operand.

Operator Type Signature Description
(int) double ⟶ int Cast double to int

char ⟶ int Cast char to int
(double) int ⟶ double Cast int to double

char ⟶ double Cast char to double
(char) int ⟶	 char Cast int to char

double ⟶	 char Cast double to char

What are the results of the expressions (int)3.14*3.14 and (double)(int)3.14?

Draw two expression trees, each node annotated with its type and value:

Which of the following claims are true?
❏ In Java, you cannot cast from a boolean to other primitive types.
❏ In Java, you cannot cast to a boolean from other primitive types.

Type Safety
The purpose of statically-typed languages is to guarantee type safety: once the
compiler type checked your program, no type incompatibilities can happen at
runtime. You are safe.
But these languages may also provide ways to circumvent these guarantees.
One example is the cast operator in Java. Some cast operations are unsafe: they will
lead to an error at runtime caused by types that are incompatible but were not
rejected at compile time. This is why casts should be avoided. If you are tempted to
introduce a cast, there is probably a better design that eschews it.

 Composition in Java Workbook 5

 Page 5 of 9 LuCE Lugano Computing Education

Research Lab

Review: Instance Fields and Instance Methods
When we use the term field, what we usually mean is instance field. An instance
field is a field inside an object (instance).

To deconstruct a record, that is, to access its instance fields, we use its instance
methods. An instance method works on an object and has access to the instance
fields of that specific object.

We already saw this:

public static double dotProduct(Vector a, Vector b) {
 return a.x() * b.x() + a.y() * b.y();
}

We could read a.x() as "Hey, a! What's your x?" The expression a evaluates to the
object on which method x will work.

In OOP lingo we say that a.x() "invokes method x on object a". And method x will
return the value of the given object's x field.

In general, to invoke an instance method, we write an expression producing an
object, a dot, the name of the method, and the argument list in parenthesis:

some expression producing an object.method()

Watch out: Invoking an instance method looks syntactically very similar but is
fundamentally different from invoking a static method. A static method does not
work on a specific object. When we invoke a static method, we just write the name
of the class in which the method is defined before the dot:

Graphics.emptyGraphic()

Until quite recently we did not use instance methods. All our methods were static
methods, like Graphics.emptyGraphic().

Instance Fields and Instance Methods of Record Classes
Any record has an instance method for each instance field. That method returns the
value of the corresponding instance field. It has the same name as the field, has no
parameters, and has a return type that is the same as the type of the field.

Complete this table of instance fields and instance methods:

Record (Class) Instance fields Instance methods
Vector x

y

Interval start
end

Odds

 Composition in Java Workbook 5

 Page 6 of 9 LuCE Lugano Computing Education

Research Lab

Class Methods or Instance Methods
So far most of our methods were static methods. A synonym of "static methods" is
class methods. We also saw a different kind of method: instance methods.

Here is an example of a class Calculator with a class method add:

public class Calculator {
 public static int add(int a, int b) {
 return a + b;
 }
}

And here is how we can call method add:

Calculator.add(1, 2)

Here is an example of a record class Vector, which automatically gets an instance
method x (the Java compiler generates an instance method for each component of
the record):

public record Vector(int x, int y) {
}

And here is how we can call method x:

new Vector(1, 2).x()

You can define class methods and instance methods in normal classes or in
record classes. Complete the table:
class C {
public static int cm() {
 return 1;
}
public int im() {
 return 1;

 }
}

record R() {
public static int cm() {
 return 1;
}
public int im() {
 return 1;

 }
}

C.cm()

new C().im()

When you call a class method, there is no object involved. A class method is like a
function in Racket BSL, or in Python. The only difference is that it is nested within a
class, and you may need to put the class name and a dot in front of the method
name to call it.

When you call an instance method, there must be an object involved. You invoke
the method "on an object". It is like a request you make to the object.

Why would you ever want to create an instance method? You would do so when the
object has some fields (instance variables). The instance method can access the
fields of the object. When you use record classes, you can call the generated
methods to access the fields corresponding to the components of the record.

 Composition in Java Workbook 5

 Page 7 of 9 LuCE Lugano Computing Education

Research Lab

OOP: Combining Data (Fields) and Behavior (Methods)
The probably most important aspect of object-oriented programming is that we can
use objects to combine data and behavior. The data is stored in the instance
variables of objects (e.g., the fields of records), and the behavior is provided by
methods which are somehow related to these objects. The methods may be class
methods or instance methods.

Let's implement the exact same functionality using class methods and using
instance methods, to compare the two ways.

Let's model a class representing left-closed intervals, like [5,9) for 5, 6, 7, 8. It should
provide functionality to represent an interval as a string, to compare two intervals
for equality, and to compute the hull of two intervals. The data is stored in objects
of class Interval. Those objects contain two instance variables: start and end. The
behavior is implemented by three methods of class Interval.

Complete this solution with class methods:
public record Interval(int start, int end) {
public static String asString(Interval i) {
 return "[" + String.valueOf(i.start()) +
 "," + String.valueOf(i.end()) + ")";
}

 public static boolean equalTo(Interval a, Interval b) {
 return
 }
 public static Interval hull(Interval a, Interval b) {
 return new Interval(
 Math.min(a.start(), b.start()),
 Math.max(a.end(), b.end())
);
 }
}

Complete this solution with instance methods:
public record Interval(int start, int end) {
public String asString() {
 return "[" + String.valueOf(this.start()) +
 "," + String.valueOf(this.end()) + ")";
}

 public boolean equalTo(Interval other) {
 return this.start() == other.start() && this.end() == other.end();
 }
 public Interval hull(Interval other) {
 return

 }
}

What is different between the two styles of implementation?

 Composition in Java Workbook 5

 Page 8 of 9 LuCE Lugano Computing Education

Research Lab

Let's assume there was some mathematical operator, say ⊜, such that a ⊜ b means
"hull of the two intervals a and b". In that case we could write the following to
compute the hull of the two intervals [0,4) and [7,9)—the result would be [0,9):

[0,4) ⊜ [7,9)

Many programming languages, Java included, do not allow us to introduce arbitrary
new operators (like ⊜). Many languages, Java included, do not even allow us to
redefine existing operators (like +). So, we cannot introduce a ⊜ operator, and we
cannot even redefine Java's + operator to compute the hull of two Interval objects.
If we want to provide our own behavior, we have to define functions, procedures,
or methods (with names like hull), not operators (with symbols like ⊜).

Let's write the expression [0,4) ⊜ [7,9) in the two styles (with class methods and
with instance methods). Draw the corresponding expression trees:

With static methods With instance methods
Interval.hull(
 new Interval(0, 4),
 new Interval(7, 9)
)

new Interval(0, 4)
 .hull(new Interval(7, 9)

In the left style, we call a class method hull and provide the two intervals as
arguments. In the right style we call the instance method hull on the first Interval
object, and we pass the second Interval object as an argument.

In both cases, the method hull has access to the two Interval objects. Check the
implementation of the two methods on the previous page: The class method can
access the two intervals via its two parameters, a and b. The instance method can
access the first interval via the "magic" parameter this and the second interval
using its parameter other.

The this variable in an instance method always refers to the object the method is
invoked on: the value of the expression in front of the dot in the method call, e.g.,
the value of x in x.hull(y), or the value of new Interval(0, 4) in new Interval(0,
4).hull(y).

The value of this becomes clear when you draw the method invocation with an
expression tree. It's the value coming into the hole in front of the dot:

Static method invocation Instance method invocation

 Composition in Java Workbook 5

 Page 9 of 9 LuCE Lugano Computing Education

Research Lab

Now, let's write a Java method that we can use to test whether hull is associative:

(a ⊜ b) ⊜ c = a ⊜ (b ⊜ c)

Using static methods (use equalTo to compare):
public static boolean yes(Interval a, Interval b, Interval c) {

 return
}

Using instance methods (use equalTo to compare):
public static boolean yes(Interval a, Interval b, Interval c) {

 return
}

Using the static method style, binary operations, i.e., methods that take two
arguments, look more symmetric, while using the instance method style, one of the
two operands has to be chosen to be the object we ask to perform the operation
(on itself and the given other object):

Static method invocation Instance method invocation
hull(a, b) a.hull(b)
equalTo(a, b) a.equalTo(b)

This asymmetry for operations that work on multiple objects is a quirk of
mainstream object-oriented programming languages (there are some experimental
languages, like Cecil, that allow symmetric "multi-methods").

Instance method calls are more powerful than class method calls
We will soon learn about subtyping, and a powerful feature enabled by subtyping:
polymorphic method calls (also known as dynamic dispatch). Dispatching means
deciding which method to call. Dispatching can happen at compile time ("Come on!
It's clear that at this call site we will always call the hull method in class Interval!")
or at runtime ("Hmm. At this call site we might call the hull method in class Interval,
or the hull method in class FastInterval. Let's wait until runtime, and decide each
time we call which of those methods to actually execute.").

Dynamic dispatch is called "dynamic", because the method implementation that
will actually execute will be looked up at runtime (not statically, at compile time).
In Java, dynamic dispatch happens at all instance method invocations.

There is no dynamic dispatch at static method invocations. That's why they are
called "static", because it is already 100% clear at compile time which method
implementation is going to execute.

With dynamic dispatch, the strange, asymmetric, notation for instance method calls,
a.m(b), with the hole for the implicit "this" parameter being placed in front of the
dot instead of in the parameter list, will start to make some sense. The "this"
parameter is very special, because its value provides the information needed to
decide which exact method should actually be called at runtime.

