
 Composition in Java Workbook 7

 Page 1 of 14 LuCE Lugano Computing Education

Research Lab

Abstraction
Student name:

TA signature:

	 	

Concepts Check off understood concepts, connect related concepts, label connections
Add the following three concepts to the map: Filter, Similarity, and Higher-Order
Function. Connect them and connect everything else as well.

Make sure you can explain each concept and each connection, you can provide
examples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
map • filter • reduce 	

◼ Difference

◼ Abstract

◼ Expression

◼ Type

◼ Behavior

◼ Method
Reference

◼ Function
Object

◼ Map

◼ Reduce

◼ Parameter

 Composition in Java Workbook 7

 Page 2 of 14 LuCE Lugano Computing Education

Research Lab

Abstraction – Turn Differences into Parameters
Code duplication is bad. If we see two pieces of code that are the same, we should
eliminate one. But what if the two pieces have a lot of similarities, but do have a
few differences?

Abstraction over Expressions – Remember Workbook 3?
Here is some code that builds two houses side-by-side:
beside(redHouse(), blueHouse())

And here are two methods that construct a house:
public static Graphic redHouse() {
 final int width = 200;
 final int height = 200;
 return above(
 equilateralTriangle(width, RED),
 rectangle(width, height, RED)
);
}

public static Graphic blueHouse() {
 final int width = 200;
 final int height = 100;
 return above(
 equilateralTriangle(width, BLUE),
 rectangle(width, height, BLUE)
);
}

Do you feel the pain? You should! So many similarities, and so few differences!
Highlight the differences in the above code.

Let's eliminate the code duplication. Replace the two methods above with a single
method that can deal with both requests. To do this, simply turn the differences
(between the two methods) into parameters:
public static Graphic

Now use your new method to build the two side-by-side houses:

Do you feel the joy? That's the joy of abstraction!

In this specific example, you abstracted over different expressions. You wrote a
method that can construct a house of any color and any height. The specific color
and height can be provided to the method via its parameters. This is much more
generally usable. You (or others) can now use your method to easily build all
kinds of different houses!

 Composition in Java Workbook 7

 Page 3 of 14 LuCE Lugano Computing Education

Research Lab

Abstraction over Types
Here is some code that computes the number of graphics-color combinations:
numberOfGraphics(graphics) * numberOfColors(colors)

And here are the two methods that do the counting:
public static int
numberOfGraphics(Sequence<Graphic> gs)
{
 return isEmpty(gs)
 ? 0
 : 1 + numberOfGraphics(rest(gs));
}

public static int
numberOfColors(Sequence<Color> cs)
{
 return isEmpty(cs)
 ? 0
 : 1 + numberOfColors(rest(cs));
}

Do you feel the pain? You should! So many similarities, and so few differences!
Highlight the differences in the above code.

Let's eliminate the code duplication. Replace the two methods above with a single
method that can deal with both requests. To do this, simply turn the differences
(between the two methods) into type parameters:
public static <

Now use your new method to compute the number of graphics-color
combinations:

Do you feel the joy? That's the joy of abstraction! In this specific example, you
abstracted over different types. You wrote a method that can count the length of
a sequence of any element type. The specific type can be provided to the method
via its type parameter. This is much more generally usable. You (or others) can
now use your method to easily count the length of any type of sequence.

 Composition in Java Workbook 7

 Page 4 of 14 LuCE Lugano Computing Education

Research Lab

Abstraction over Behaviors
Here is some code that reports (we don't really care what report does) the sum
and product of a sequence of values:
report(sum(values), product(values))

And here are the two methods that compute the statistics:
public static int
sum(Sequence<Integer> vs)
{
 return isEmpty(vs)
 ? 0
 : first(vs) + sum(rest(vs));
}

public static int
product(Sequence<Integer> vs)
{
 return isEmpty(vs)
 ? 1
 : first(vs) * product(rest(vs));
}

Do you feel the pain? You should! So many similarities, and so few differences!
Highlight the differences in the above code.

Let's eliminate the code duplication. Replace the two methods above with a single
method that can deal with both requests. To do this, simply— SIMPLY?? YOU MUST
BE KIDDING ME!!!—turn the differences (between the two methods) into
parameters:
public static

Now use your new method to compute sum and product for your report:
report(

Ok, it's highly likely that you are unable to solve the above challenge initially.

That's perfectly fine! Continue with the next page (keeping in mind the goal of
solving the above challenge). At the end of the worksheet, return here to succeed.

So, you're back, and you did it? Do you feel the joy? That's the joy of abstraction! In
this specific example, you abstracted over different behaviors. You wrote a
method that can do any kind of aggregation computation over a sequence of
integers. The specific kind of aggregation, and the value to return if the sequence
is empty, can be provided to the method via its parameters. This is much more
generally usable. You (or others) can now use your method to easily do lots of
different kinds of aggregations.

 Composition in Java Workbook 7

 Page 5 of 14 LuCE Lugano Computing Education

Research Lab

Functions as Values
We have seen different types of values, such as numbers (int, double), truth
values (boolean), text (String), colors (Color), graphics (Graphic), and data
structures (Sequence).

What can we do with a value (of any of those types)?

☐ pass a value via a parameter to a method
☐ return a value as a result from a method
☐ pass a value as an operand to an operator
☐ receive a value as a result from an operator

If a graphic or a color can be a value, couldn't a function also be a value? If a
function could be a value, we could implement different functions (e.g., add,
multiply) that have the same type (type signature), but have different behaviors.
Then we could pass the corresponding function via a parameter to our method!

Of course, in Java that can be done! But we need to solve three challenges:

1. How to specify the type of a function
2. How to create a function object
3. How to call the function behind a function object

Assume we want to write a method named compute, which takes two parameters: a
function f to execute, and a double x. When we call compute, we pass a function
object as the first argument, and a double as the second argument. compute calls
the given function (whatever it is) and passes the given x to that function as an
argument. It then takes the result of the function and returns it:

public static double compute(TYPE f, double x) {
 return CALL f(x);
}

compute(CREATE FUNCTION OBJECT, 3.14)

Let's tackle the first challenge: What is the type of f? Looking at the expression
inside compute, we see that f seems to be a method that takes a double and
returns a double. In a clean programming language, we could write the type of f as
double	⟶	double. Unfortunately, Java does not have such an arrow notation for
function types.

Instead, we have to use types provided by some library. JTamaro provides
Function1 (function with one parameter) and others. Complete the table:

Color ⟶ Graphic Function1<Color,Graphic>
Integer ⟶	 Double Function1<Integer,Double>

Double, Double ⟶	 Boolean Function2<Double,Double,Boolean>
 ⟶	 String Function0<String>

int ⟶	 int Function1<Integer,Integer>
Boolean, int ⟶	 Double

Sequence<Graphic> ⟶	 Graphic
Double, Double ⟶	 Double

Commented [MH1]: Start with creating a class with an
instance method (based on the previous lab, with
expressions, and then naturally end up with
functional interface and calling apply)

Commented [J2]: Argument or parameter?

 Composition in Java Workbook 7

 Page 6 of 14 LuCE Lugano Computing Education

Research Lab

So, we solved the first challenge: how to specify the type:

public static double compute(Function1<Double,Double> f, double x) {
 return CALL f(x);
}

compute(CREATE FUNCTION OBJECT, 3.14)

The second challenge is how to create a function object of that type, so we can
pass it to compute. One way to do this in Java is with method references.

Assume we already have the following classes and methods:

public class Num {
 public static double abs(double v) {
 return v < 0 ? -v : v;
 }
 public static double inc(double v) {
 return v + 1;
 }
 public static int zero() {
 return 0;
}

}
public class Compare {
 public static boolean isZero(int a) {
 return a == 0;
 }
 public static boolean gt(double a, double b) {
 return a > b;
 }
}
public class Visual {
 public static Graphic rotate180(Graphic g) {
 return rotate(180, g);
 }
 public static Graphic underlay(Graphic a, Graphic b) {
 return overlay(b, a);
 }
}

We can create a function object by using a method reference, which consists of
the class name, ::, and the method name. Given the above code, Num::abs is an
expression that produces a function object for the abs method in class Num.

Complete the following table with matching function types:

Method Reference Function Type
Num::abs Function1<Double,Double>
Num::inc
Num::zero
Compare::isZero
Compare::gt
Visual::rotate180
Visual::underlay

Commented [J3]: s/of/for/

 Composition in Java Workbook 7

 Page 7 of 14 LuCE Lugano Computing Education

Research Lab

So, we solved the first two challenges: how to specify the type, and how to create
a function object:

public static double compute(Function1<Double,Double> f, double x) {
 return CALL F(X);
}

compute(Num::abs, 3.14)

The third and last challenge is how to call the function that's represented by a
function object.

To call a function represented by a function object of type Function0, Function1,
Function2, Function3, …, you invoke its apply method as follows:

Type of f Call
Function0<Double> f.apply()
Function1<Double,Double> f.apply(3.14)
Function2<Double,Double,Double> f.apply(3.14, 1.1)
Function3<Double,Double,Double,Double> f.apply(3.13, 1.1, 0.4)

Note that the last of the type parameters corresponds to the return type; thus, we
have one more type parameter than function parameters.

If g has type Function2<Integer,Double,Boolean>, which of the following calls are
ok? If a call is ok, what is the return type?

Call Ok? Return type
g.apply() ☐
g.apply("3") ☐
g.apply(3, 1.1) ☐
g.apply(3, 1.1, true) ☐

Note: The return type is given by the type of g!

So, we solved all three challenges: how to specify the type, how to create a
function object, and how to call the function behind the function object:

public static double compute(Function1<Double,Double> f, double x) {
 return f.apply(x);
}

compute(Num::abs, 3.14)

Note that we skipped quite a few details. You will learn about them later. For now,
you know enough to implement your own functions like compute, which take
another function as a parameter and call it. These kinds of functions, which "play"
with other functions, are called higher-order functions.

 Composition in Java Workbook 7

 Page 8 of 14 LuCE Lugano Computing Education

Research Lab

Mapping, Filtering, and Reducing Once And For All
We previously learned about three patterns of repetitive computations:

Mapping Filtering Reducing

We used those to solve many different problems, e.g., to turn angles or colors into
graphics, or to compose multiple graphics into one.

This was a bit painful. We had to write a similarly-looking recursive method every
time we wanted to do some repetitive computation. If we see similar code, we
should feel the urge to refactor it, to eliminate code duplication.

A General Mapping Function
Here are two special-purpose mapping methods:

public static Sequence<Color> anglesToColors(Sequence<Integer> angles) {
 return isEmpty(angles)
 ? empty()
 : cons(
 angleToColor(first(angles)),
 anglesToColors(rest(angles))
);
}

public static Sequence<Graphic> stringsToGs(Sequence<String> strings) {
 return isEmpty(strings)
 ? empty()
 : cons(
 stringToG(first(strings)),
 stringsToGs(rest(strings))
);
}

What are the differences between the two mapping methods?
☐ The name of the methods – m
☐ The name of the parameters – p
☐ The type of the element of the sequence passed in – I
☐ The type of the element of the sequence returned – O
☐ The behavior applied to individual elements – f

If we keep what's similar and introduce a black label for each difference, we get:

public static Sequence<O> m(Sequence<I> p) {
 return isEmpty(p)
 ? empty()
 : cons(
 f(first(p)),
 m(rest(p))
);
}

neutral element result

 Composition in Java Workbook 7

 Page 9 of 14 LuCE Lugano Computing Education

Research Lab

We want to abstract; to keep the similar code, and to turn differences into
parameters (type parameters and value parameters). We want to develop a
single method that can map from any sequence to any other sequence using any
possible mapping function.

Changing the name of our method and the name of its parameters does not affect
any values, types, or behaviors. Thus, we do not need to introduce parameters for
the names. We can pick a good name that makes sense in general:

public static Sequence<O> map(Sequence<I> sequence) { … }

Our general-purpose map method should be able to map from any type of
elements (indicated with the black label I) to any (possibly different) type of
elements (labeled O). E.g., from Integer to Color, or from String to Graphic, like
the two special-purpose methods anglesToColors and stringsToGs. Thus, we need
to introduce type parameters for I and O:

public static <A,B> Sequence map(Sequence<A> sequence) { … }

Our general-purpose map method now looks like this:

public static <A,B> Sequence map(Sequence<A> sequence) {
 return isEmpty(sequence)
 ? empty()
 : cons(
 f(first(sequence)),
 map(rest(sequence))
);
}

The only remaining difference is f. f stands for a function (angleToColor and
stringToG in our two specific examples). Thus, we can introduce a value
parameter (to allow passing a function object) to parameterize this difference:

public static <A,B> Sequence map(
 Function1<A,B> mapper, Sequence<A> sequence) {
 return isEmpty(sequence)
 ? empty()
 : cons(
 mapper.apply(first(sequence)),
 map(mapper, rest(sequence))
);
}

This is it! We have a general-purpose map method. It can map from whatever
sequence to whatever other sequence using whatever mapping function!

Assume angleToColor and stringToG are methods in class Demo. Refactor the calls
using the general purpose map function:

Using special-purpose function Using general-purpose map
anglesToColors(range(0, 360))
stringsToGs(of("Hi", "Ciao!"))

 Composition in Java Workbook 7

 Page 10 of 14 LuCE Lugano Computing Education

Research Lab

A General Filter Function
Here are two special-purpose filtering methods:

public static Sequence<Double> positives(Sequence<Double> reals) {
 return isEmpty(reals) // termination condition
 ? empty() // base case
 : (// recursive case
 first(reals) >= 0 // predicate
 ? cons(first(reals), positives(rest(reals))) // keep
 : positives(rest(reals)) // drop
);
}

public static Sequence<Integer> evens(Sequence<Integer> numbers) {
 return isEmpty(numbers) // termination condition
 ? empty() // base case
 : (// recursive case
 first(numbers) % 2 == 0 // predicate
 ? cons(first(numbers), evens(rest(numbers))) // keep
 : evens(rest(numbers)) // drop
);
}

What are the differences between the two filtering methods?
☐ The name of the methods – m
☐ The name of the parameters – a
☐ The type of the element of the sequence – T
☐ The predicate applied to individual elements – p

If we keep what's similar and introduce a black label for each difference, we get:

public static Sequence<T> m(Sequence<T> a) {
 return isEmpty(a) // termination condition
 ? empty() // base case
 : (// recursive case
 p // predicate
 ? cons(first(a), m(rest(a))) // keep
 : m(rest(a)) // drop
);
}

Let's first pick general names for the method and the parameter:

public static Sequence<T> filter(Sequence<T> sequence) { … }

Now let's introduce a type parameter, to parameterize the type of elements the
filter can process. Note that for filtering, the element type of the parameter and
the return type is the same, so we only need one type parameter.

public static <E> Sequence<E> filter(Sequence<E> sequence) { … }

 Composition in Java Workbook 7

 Page 11 of 14 LuCE Lugano Computing Education

Research Lab

Our general-purpose filter method now looks like this:

public static <E> Sequence<E> filter(Sequence<E> sequence) {
 return isEmpty(sequence)
 ? empty()
 : (
 p
 ? cons(first(sequence), filter(rest(sequence)))
 : filter(rest(sequence))
);
}

The predicate p stands for an entire expression. Here are the two predicates from
the two special-purpose filtering methods:

first(sequence) >= 0 // first element of the sequence is positive
first(sequence) % 2 == 0 // first element of the sequence is even

We create a function for each of these predicate expressions. Both expressions
need access to the sequence (so they can look at its first element):

public static boolean positive(Sequence<Double> sequence) {
 return first(sequence) >= 0;
}
public static boolean even(Sequence<Integer> sequence) {
 return first(sequence) % 2 == 0;
}

Now we introduce a parameter to our filter method, so we can pass a filter
predicate:

public static <E> Sequence<E> filter(
 Function1<Sequence<E>,Boolean> predicate, Sequence<E> sequence) {
 return isEmpty(sequence)
 ? empty()
 : (
 predicate.apply(sequence)
 ? cons(first(sequence), filter(predicate, rest(sequence)))
 : filter(predicate, rest(sequence))
);
}

The predicate must be an arity-1 (1 parameter) function, taking a parameter of
type Sequence<E> (the same type of sequence the filter method gets and
returns). The predicate has a return type of Boolean because it has to return
whether to keep or to drop the element.

We are pretty much done. We could use our code as is. But our design is not ideal.

Do filter predicates REALLY need access to the sequence? Isn't a predicate
supposed to only see an individual element (and not look at the rest)?

 Composition in Java Workbook 7

 Page 12 of 14 LuCE Lugano Computing Education

Research Lab

Let's refactor our solution, so the predicates look as follows:

public static boolean positive(double element) {
 return element >= 0;
}

public static boolean even(int element) {
 return element % 2 == 0;
}

That's cleaner, and it makes it easier to create your own predicates in the future!

Now refactor the filter method so it works with these new, more appropriate
predicates:
public static <E> Sequence<E> filter(
 , Sequence<E> sequence)
 return isEmpty(sequence)
 ? empty()
 : (

 ? cons(first(sequence), filter(predicate, rest(sequence)))
 : filter(predicate, rest(sequence))
);
}

This is it! We have a general-purpose filter method. It can filter whatever
sequence we have using whatever filtering predicate!

Assume positive and even are methods in class Demo. Refactor the calls using the
general-purpose filter function:

Using special-purpose function Using general-purpose filter
positives(of(-1.0, 2.0))
evens(range(10))

 Composition in Java Workbook 7

 Page 13 of 14 LuCE Lugano Computing Education

Research Lab

A General Reduce Function
Here are two special-purpose reducing methods:

public static Integer product(Sequence<Integer> numbers) {
return isEmpty(numbers)
 ? 1
 : first(numbers) * product(rest(numbers));

}

public static String join(Sequence<String> strings) {
return isEmpty(strings)
 ? ""
 : first(strings) + join(rest(strings));

}

What are the differences between the two reducing methods?
☐ The name of the methods – m
☐ The name of the parameters – a
☐ The type of the element of the sequence – T
☐ The return type of the method - R
☐ The combining operation – c
☐ The neutral element – e

If we keep what's similar and introduce a black label for each difference, we get:

public static R m(Sequence<T> a) {
 return isEmpty(a)
 ? e
 : first(a) c m(rest(a));
}

Let's first pick general names for the method and the parameter:

public static R reduce(Sequence<T> sequence) { … }

Now let's introduce type parameters, to parameterize the type of elements the
method can process, and the type of value it produces. Note that for reduction,
the element type of the sequence and the type of value it produces do not need
to be the same (although they often are the same).

public static <A,B> B reduce(Sequence<A> sequence) { … }

Our general-purpose reduce method now looks like this:

public static <A,B> B reduce(Sequence<A> sequence) {
 return isEmpty(sequence)
 ? e
 : first(sequence) c reduce(rest(sequence));
}

neutral element result

 Composition in Java Workbook 7

 Page 14 of 14 LuCE Lugano Computing Education

Research Lab

The neutral elements e from the two special-purpose reduction methods were:

1 // neutral element of product
"" // neutral element of join

We can add a parameter so callers can provide their desired neutral element:

public static <A,B> B reduce(B neutralElement, Sequence<A> sequence) {
 return isEmpty(sequence)
 ? neutralElement
 : first(sequence) c reduce(neutralElement, rest(sequence));
}

Here are the expressions involving the combining operations c from the two
special-purpose reduction methods:

first(numbers) * product(rest(numbers))
first(strings) + join(rest(strings))

The combining operation really is just the * and the + operator. While we can
create a function object using a method reference, Java does not have a similar
concept for operators (there is no such thing as an "operator reference").
However, we can wrap an operator in a method, like this:

public static int mul(int a, int b) {
 return a * b;
}
public static String concat(String a, String b) {
 return a + b;
}

Then we can use method references (e.g., Demo::mul and Demo::concat) to refer to
those operations. Now we can add another parameter to reduce, so callers can
provide their desired combining operation in the form of a function object:

public static <A,B> B reduce(
 B neutralElement, Function2<A,B,B> combiner, Sequence<A> sequence) {
 return isEmpty(sequence)
 ? neutralElement
 : combiner.apply(
 first(sequence),
 reduce(neutralElement, combiner, rest(sequence)));
}

This is it! We have a general-purpose reduce method. It can reduce whatever
sequence we have using whatever combining function and neutral element!

Assume mul and concat are methods in class Demo. Refactor the calls using the
general purpose reduce function:

Using special-purpose function Using general-purpose reduce
product(of(10, 20, 30))
join(of("Ciao", "Hi", "Ho"))

Now you're ready to go back to page 4, and solve the "Abstraction over Behaviors"
challenge involving a sum and a product method.

