
 Composition in Java Workbook 8

 Page 1 of 14 LuCE Lugano Computing Education

Research Lab

More Records, Anonymous Functions
Student name:

TA signature:

	
Concepts Check off understood concepts, connect related concepts, label connections
Add the following three concepts to the map: Lambda, State, and Higher-Order
Function. Connect them and connect everything else as well.

Make sure you can explain each concept and each connection, you can provide
examples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
There are no new names this week

 Composition in Java Workbook 8

 Page 2 of 14 LuCE Lugano Computing Education

Research Lab

Seeing Records as Table Rows
In informatics we deal with information. Often that information is stored in tables.
A table has rows and columns. Here is a table with the 21 neighborhoods of
Lugano (https://www.lugano.ch/la-mia-citta/identita-e-storia/quartieri.html):

Name Population Area [km2] Min Elevation Max Elevation
Barbengo 2351 2.62 370 475
Besso 5193 0.65
Brè-Aldesago 1072 4.2
Breganzona 5364 2.28 435 515
Cadro 2740 4.56 475 1516
Carabbia 615 1.07 518 588
Carona 949 4.69 602 911
Castagnola-Cassarate-Ruvigliana 6424 1.43
Centro 5404 1.03
Cureggia 178 0.66 653 1180
Davesco-Soragno 1595 2.5 421 1517
Gandria 285 3.45 292 1034
Loreto 3080 0.59
Molino Nuovo 9662 1.23
Pambio-Noranco 803 0.55 349 376
Pazzallo 1666 1.62 423 856
Pregassona 9400 2.26 378 1250
Sonvico 2098 11.06 603 1491
Val Colla 1340 11.06 1100 2116
Viganello 7021 1.2 283 283
Villa Luganese 557 2.21 603 1350

How could we represent this table in Java? One option is to have five "parallel"
sequences, one sequence per column. Fill in the types:

public static Sequence< > names() { return of("Barbengo", "Besso", …); }
public static Sequence< > population() { return of(2351, 5193, …); }
public static Sequence< > area() { return of(2.62, 0.65, …); }
public static Sequence< > minElevation() { return of(370.0, …); }
public static Sequence< > maxElevation() { return of(475.0, …); }

This organization groups the data by column; by field. All names are grouped
together into one sequence; all population counts are grouped together; ...

Alternatively, we could group the data by row; by object. All information of
Barbengo is grouped; all information about Besso is grouped together; ...

To do this kind of grouping, we can use a record class. Let's declare a record class
to represent neighborhoods:

public record Neighborhood(

 name,
 population,
 area,
 minElevation,
 maxElevation

) { }

In the record declaration on the left and the
method declarations above:

• highlight the column names
• fill in the type for each column

Do you need to use types that are wrapper classes in both cases?

 Composition in Java Workbook 8

 Page 3 of 14 LuCE Lugano Computing Education

Research Lab

In object-oriented programming (OOP) we like representing information as
objects. In class-based languages like Java, the fields an object must contain are
specified by a class. In OOP, when you see a table like the one with our
neighborhoods, you immediately design a class for it in your head.

While classes are the most common way to model tables, there are other ways. We
saw above that we could store the table in several sequences, one sequence per
column.

Could we represent the neighborhoods as a sequence of sequences? Try!

Constructing and Deconstructing Objects
Now that we have a class to represent neighborhoods, we can create objects of
that class. Here is an expression that creates the object representing Barbengo:

new Neighborhood("Barbengo", 2351, 2.62, 370.0, 475.0)

We could write a method that returns a sequence of all Lugano neighborhoods:
public static Sequence<Neighborhood> luganoNeighborhoods() {
 return of(
 new Neighborhood("Barbengo", 2351, 2.62, 370.0, 475.0),
 new Neighborhood("Besso", 5193, 0.65, …
);
}

We use new ClassName(…) to create objects of a class. We can also say:

• allocate an object of a class
• create an instance of a class
• instantiate a class

So, we can create objects. That's great! But once we construct an object, what do
we do with it? We can pass it to a method, and we can return it from a method:

public static Neighborhood id(Neighborhood hood) {
 return hood;
}

That's fine, but rather boring. Can we somehow deconstruct the object? Can we
look at its fields? Of course! Here is how:

public static double elevationDifference(Neighborhood hood) {
 return hood.maxElevation() – hood.minElevation();
}

The elevationDifference method receives a neighborhood as a parameter,
determines its maximum and minimum elevation, and returns their difference.

 Composition in Java Workbook 8

 Page 4 of 14 LuCE Lugano Computing Education

Research Lab

Expression Trees and Object Diagrams
We used expressions that call static methods many times before. We saw that we
can call a static method with or without specifying the class name. Here are two
static method invocation expressions, both calling the same method. Annotate
each expression tree node with its type:
luganoNeighborhoods() Demo.luganoNeighborhoods()

Note: The former only compiles if the expression is inside the corresponding class
(in this case, inside class Demo), or if the method name has been imported using a
static import.

We have shown object diagrams in the past, e.g., of cons cells and empty cells:

Given that we can use record classes to create our own types of
objects, we also can draw those. Here is a diagram of the object
of record class Neighborhood that represents Barbengo.

It shows a variable for each field, and next to the variable we
write the field's name.

We just encountered two important kinds of expressions. Class instance creation
expressions consist of the keyword new followed by the name of the class, and a
list of constructor arguments. Instance method invocation expressions consist of
a hole (for a subexpression producing an object), a dot, the name of the method,
and a list of method arguments. Annotate each expression tree node with its type:
new Neigborhood(
 "Barbengo", 2351, 2.62, 370.0, 475.0)

hood.maxElevation()

Draw the expression tree for the following expression. Annotate nodes with types
and values. To show values of record classes (objects), draw the object diagram:
new Neigborhood("Carona", 949, 4.69, 602.0, 911.0).area()

Cons Cell

30 42 13

Empty Cell

Neighborhood

2351

"Barbengo"

2.62

370.0

475.0

population

name

area

minElevation

maxElevation

 Composition in Java Workbook 8

 Page 5 of 14 LuCE Lugano Computing Education

Research Lab

Lambdas
Last week we wrote several small methods to use as mappers, predicates, or
combining functions. Here are some examples:

public class Num {
 public static double abs(double v) {
 return v < 0 ? -v : v;
 }
 public static double inc(double v) {
 return v + 1;
 }
}
public class Compare {
 public static boolean isZero(int a) {
 return a == 0;
 }
 public static boolean gt(double a, double b) {
 return a > b;
 }
}
public class Visual {
 public static Graphic rotate180(Graphic g) {
 return rotate(180, g);
 }
 public static Graphic underlay(Graphic a, Graphic b) {
 return overlay(b, a);
 }
}

We then used those functions as values by writing a method reference to
construct a function object:

Num::abs

This allowed us to call higher-order functions like map, filter, and reduce:

map(Num::inc, of(2.0, 1.0, 4.0))

In the following table, check each cell if the corresponding function can be used
as a mapper in map, as a predicate in filter, or as a combining function in reduce:

 map filter reduce
Function Signature ⟶ ⟶ ⟶
abs Do ⟶	Do
inc Do ⟶	Do
isZero In ⟶	Bo
gt Do, Do ⟶	Bo
rotate180 Gr ⟶	Gr
underlay Gr, Gr ⟶	Gr

While it is fantastic that method references allow us to pass around functions,
having to write a method just to, e.g., specify how to increment something is
painful.

 Composition in Java Workbook 8

 Page 6 of 14 LuCE Lugano Computing Education

Research Lab

Lambdas provide a convenient alternative to method references; they are a way
to create a function object right on the spot. Here is an example:

Using method reference Using lambda
public class Num {
 public static double inc(double v) {
 return v + 1;
 }
}
map(Num::inc, of(2.0, 1.0, 4.0))

// no class or method needed!

map((v) -> v + 1, of(2.0, 1.0, 4.0))

Translate between uses of method references and uses of lambdas:
map(
Num::abs,
of(2.0, -1.0)

)

map(
Compare::isZero,
of(1, 0)

)

 filter(
(v) -> v == 0,
of(0, 4, 1)

)
map(
Visual::rotate180,
of(triangle(90, 90, 60, RED))

)

 reduce(
(a, b) -> overlay(b, a),
emptyGraphic(),
of(g1, g2, g3)

)
Do this: In one of your lab repositories, create a class Playground, put each of the
above 10 code snippets into a separate method, and test the method.

A lambda is a way to create a function right at a point where one needs one. That
function has no name. It's an anonymous function.

Like a method, a lambda can have zero, one, or more parameters. And like a
method, it returns a value. The syntax for lambdas in Java is quite flexible: you can
specify the parameter types, or you can leave them out (which is quite extreme for
Java!), and if you have only one parameter, you don't need to write the () around
the parameter:

Method Lambda (with alternatives)
public static int five() {
 return 5;
}

() -> 5

public static int twice(int v) {
 return v * 2;
}

(int v) -> v * 2
(v) -> v * 2
 v -> v * 2

public static int mul(int a, int b) {
 return a * b;
}

(int a, int b) -> a * b
(a, b) -> a * b

 Composition in Java Workbook 8

 Page 7 of 14 LuCE Lugano Computing Education

Research Lab

Another Record: ParliamentaryGroup
The Swiss parliament is split into different parliamentary groups. Each group
consists of one or more political parties. Here are the parliamentary groups of the
51st legislative period from 2019 to 2023 (https://www.parlament.ch/en/organe/groups):

Name Acronym President Members
Swiss People's Party V Thomas Aeschi 62
Social Democrats S Roger Nordmann 47
The Centre Group ME Philipp Matthias Bregy 45
FDP. The Liberal Group RL Damien Cottier 41
Green group G Aline Trede 35
Green liberal group GL Tiana Angelina Moser 16

Model this table as a Java record named ParliamentaryGroup:
public record

Implement the following method so it instantiates a parliamentary group of your
choice (a real one from the table above, or one you make up):
public static ParliamentaryGroup someGroup() {
 return
}

Implement the following method to get the names of the presidents of all groups.
Use a lambda in your implementation:
public static Sequence<String> presidentNames(
Sequence<ParliamentaryGroup> groups)

{
 return

}

Implement the following method to find all groups that have fewer than the given
number of members. Use a lambda in your implementation:
public static Sequence<ParliamentaryGroup> groupsSmallerThan(
 int members,
Sequence<ParliamentaryGroup> groups)

{
 return

}

 Composition in Java Workbook 8

 Page 8 of 14 LuCE Lugano Computing Education

Research Lab

Pairs
You know that Sequence<T> is a parametric type with T as its type parameter. It can
represent sequences of 0 or more elements of type T.

Here is a sequence of integers, which you could construct with of(30, 42, 13):

The sequence consists of four objects: three Cons cells, and one Empty cell. Each
Cons cell contains two values: the element (in this case an integer number) and
the reference to the rest of the sequence (shown as an arrow).

Pair<F,S> is another parametric type, with two type parameters: F and S. A pair
can be seen as a fixed-length sequence containing exactly two elements: a first
element of type F, and a second element of type S. You can create one like this:

<F,S> Pair<F,S> pair(F first, S second)

Here are a few examples. Complete the empty cells in the table:
pair(30, 42) pair("Hi", "ho") pair(26, 'Z')
Pair<
 Integer,
 Integer
>

Pair<
 String,
String

>

Pair<
 String,
Double

>

Deconstructing Pairs
When introducing the Sequence class, we discussed how we can construct a
sequence, and how we can deconstruct a sequence. We just saw how to construct
a pair, using the pair method. Here are two methods to deconstruct a given pair:

<F,S> F firstElement(Pair<F,S> pair)

<F,S> S secondElement(Pair<F,S> pair)

Write a method makePosition that takes two parameters named x and y of type
double and constructs and returns a position (a pair of two doubles):
public static

Write a method getX that takes a parameter that's a pair of two doubles and
returns the x-part of the position:
public static

Cons Cell

30 42 13

Empty Cell

Pair

30 42

Pair

"Al" 1.5

Pair

26 'Z'

 Composition in Java Workbook 8

 Page 9 of 14 LuCE Lugano Computing Education

Research Lab

Zipping Sequences
We can zip two sequences to get a sequence of pairs. Complete the table:
zip(of(1, 2, 3), of(4, 5, 6)) (1 4) (2 5) (3 6)
zip(range(1, 5), range(5, 1, -1))
zip(range(3), of("A", "B", "C"))

A special case of zip is zipWithIndex:
zipWithIndex(of(0, 0, 7)) (0 0) (0 1) (7 2)
zipWithIndex(of("A", "B", "C"))

Above we use (… …) to represent a pair. Java does not have literals for pairs, thus
there is no such short way to represent them in text, except using an expression
that creates them, e.g., pair(…, …).

Which of the following statements are correct?
❏ You can concatenate two sequences with different element types.
❏ You can zip two sequences with different element types.

Composing Sequences and Pairs
Assume we want to represent the following data:
"A" "B" "C" "D" "E" "F" "G" "H"
1 2 3 4 5 6 7 8

We can represent this in two ways:

Sequence of pairs Sequence<Pair<String,Integer>>:
"A" "B" "C" "D" "E" "F" "G" "H"
1 2 3 4 5 6 7 8

Write an expression using pair and of to compose the above sequence of pairs:

Pair of sequences Pair<Sequence<String>,Sequence<Integer>>:
"A" "B" "C" "D" "E" "F" "G" "H"

1 2 3 4 5 6 7 8

Write an expression using pair and of to compose the above pair of sequences:

Note: We can use zip to convert a pair of sequences into a sequence of pairs.

 Composition in Java Workbook 8

 Page 10 of 14 LuCE Lugano Computing Education

Research Lab

The Two Fundamental Aspects of an Object
Objects are instances of classes. Objects combine two fundamental aspects.

Complete this table:

Instance field Instance method

Field inside an object

Method working on an

Object’s state

Object’s

expr.method()

Instance Fields and Instance Methods of Record Classes
Records are instances of record classes.

Any record has an instance field and instance method for each component.
These methods return the value of the corresponding instance field. The method
has the same name as the field, has no parameters, and has a return type that is
the same as the type of the field.

Complete this list of instance fields and instance methods:

Record (Class) Instance fields Instance methods

Neighborhood

name

population

area

minElevation

maxElevation

ParliamentaryGroup

 Composition in Java Workbook 8

 Page 11 of 14 LuCE Lugano Computing Education

Research Lab

Sorting
Can you recognize the following sorting algorithm?

public static <T> Sequence<T> sort(

Function2<T,T,Boolean> lessEqual,
Sequence<T> sequence

) {
 return isEmpty(sequence)
 ? empty()
 : concat(
 sort(
 lessEqual,
 filter(x -> lessEqual.apply(x, first(sequence)), rest(sequence))
),
 cons(
 first(sequence),
 sort(
 lessEqual,
 filter(x -> !lessEqual.apply(x, first(sequence)), rest(sequence))
)
)
);
}

Explain how this code corresponds to the known sorting algorithm:

The sort method is generic. We can sort a sequence of any type of element. We
just need to provide a comparison function for the parameter lessEqual, which
the algorithm uses to tell whether an element is less or equal to another element.

Let's sort a sequence of integers and a sequence of doubles:

sort((a, b) -> a <= b, range(100, 0, -1))
sort((a, b) -> a <= b, of(1.5, 2.0, 0.1))

Complete this expression to sort a sequence of booleans (such that false is
considered less than true):
sort(
 (a, b) ->
 of(true, false, false, true, false)
)

To sort a sequence of strings, we need a way to compare two strings. The String
class has an instance method compareTo which does this: "A".compareTo("B")
evaluates to -1, "A".compareTo("A") to 0, and "B".compareTo("A") to 1.

Complete this expression to sort a sequence of strings in alphabetical order:
sort(
 (a, b) ->
 of("Hello", "Ciao", "Hallo", "Salut")
)

 Composition in Java Workbook 8

 Page 12 of 14 LuCE Lugano Computing Education

Research Lab

Let's sort some more interesting data. Also check your code in an IDE!

Complete this expression to sort a sequence of neighborhoods by population:
sort(
 (a, b) ->
 luganoNeighborhoods()
)

Complete this expression to sort a sequence of neighborhoods by name, in
reverse alphabetical order:
sort(
 (a, b) ->
 luganoNeighborhoods()
)

Assume a method parliamentaryGroups() that returns a sequence with the Swiss
parliamentary groups (as specified on a prior page). Complete this expression so
it sorts that sequence by acronym:
sort(
 (a, b) ->
 parliamentaryGroups()
)

Complete this expression to sort a sequence of pairs by their first element:
sort(
 (a, b) ->
of(
 pair(1, "X"),
 pair(9, "A"),
 pair(3, "Z"),
)

)

Write an expression to get the sequence of names of the top-10 Lugano
neighborhoods by area. Use luganoNeighborhoods, sort, take, and map:

Write an expression to get the sequence of names of Lugano neighborhoods
ordered by their elevation difference. Filter out neighborhoods for which the
elevation is not known (which you can detect if Double.isNaN returns true for
minElevation or maxElevation). Use luganoNeighborhoods, filter, sort, and map:

 Composition in Java Workbook 8

 Page 13 of 14 LuCE Lugano Computing Education

Research Lab

Pair is a Record Class
Pairs are objects of type Pair. We constructed pairs by calling Pairs.pair:

pair("Al", 1.5) –or– Pairs.pair("Al", 1.5)

What does this method do to create a pair object? Here is the implementation:

public static <F,S> Pair<F,S> pair(F a, S b) {
 return new Pair<F,S>(a, b);
}

It creates an instance of class Pair the same way we created an instance of class
Neighborhood or ParliamentaryGroup. The only difference is the type parameters.
Pairs are generic (they have type parameters). A pair has two fields, but the type is
not baked into the Pair class; instead it can be chosen whenever a pair is created.

The following two expressions produce the same result:
Pairs.pair(12, "Hi") new Pair<Integer,String>(12, "Hi")

When we deconstructed pairs, we used firstElement and secondElement:

Pairs.firstElement(pair(12, "Hi"))

What do those methods do? Here is the implementation of firstElement:

public static <F,S> F firstElement(Pair<F,S> pair) {
 return pair.first();
}

Given this information, write down the source code of the Pair record class:
public record

Note: Because Pair is a generic class, in the above definition you have to
introduce the type parameters. This is similar to introducing type parameters for a
generic method (we have to write something like <A,B>). Guess how to do that.
Then do this: check that you are correct by creating your own Pair class in an IDE.

Now that you had a look behind the scenes, in theory you don't need class Pairs
and its static methods (pair, firstElement, and secondElement) anymore.

Reimplement the following expressions without using class Pairs:

firstElement(pair(1, 2))
new Pair<Integer,Integer>(1, 2).first()

pair(firstElement(pair(1, 'a')), secondElement(pair("A", 1.4)))

 Composition in Java Workbook 8

 Page 14 of 14 LuCE Lugano Computing Education

Research Lab

Record Types for Other Kinds of Tuples
A pair is a tuple with two fields. Declare record classes for triples and quadruples:
public record Triple<A,B,C>(

public record

Going to the Limit
Let's declare a record class with a single field. It doesn't really do anything. It just
wraps an object around the given value.

public record Monuple<T>(T t) {
}

This is similarly “useless” to creating a function that just returns whatever it
receives as a parameter. That function is called "identify function":

public static <T> T id(T t) {
 return t;
}

While a Monuple record can "store" a value, the id function can "process" a value.

Let's go even crazier. Can you declare a record EmptyTuple without any field at all?

Do this: In an IDE, declare record classes EmptyTuple, Monuple, Pair, Triple, and
Quadruple, and a class Fun containing method id, and make sure they work as
expected.

