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Statements & Local Mutation 
Student name: 
 
 

TA signature: 
 
 

Based on Photo by Sangharsh Lohakare on Unsplash 

	
Concepts Check off understood concepts, connect related concepts, label connections 

 
Make sure you can explain each concept and each connection, you can provide 
examples, and you can identify them in a given piece of code. 

Names Circle the methods, underline the types 
There are no new names this week 
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Taking a Snapshot at a Point of a Program Execution 
We used object diagrams to draw sequences, pairs, and objects with their fields. 
Let's extend those diagrams into complete memory diagrams so we can use them 
to show the complete picture of the state at a given point in the program 
execution. They are like a snapshot of memory, of every byte of data in use by a 
program. 
 
The memory of a running program is organized into three areas: 

Memory Area What is stored there? 
Heap Memory Objects (including their instance variables) 
Global Memory Static fields (class variables) 
Stack Memory Call stack frames (method parameters, the magic this 

variable, local variables) 
 
Heap Memory 
The heap contains objects. We sometimes draw those objects in a compact form, 
with each object being a reddish rounded rectangle, and each field being a white 
rectangle inside an object: 

 
 
We can display the same data structure with more detail: we attach black labels to 
indicate the object's class, and we write the field name to the left of each field. 

 
 
We can be even more explicit: we write the field's type above the field, for 
parametric types (like Cons<T>), we fill in the type parameter, and we show that 
strings actually are objects, and thus are not stored inside a field, but in a 
separate object pointed to by a reference (arrow). 

 
 
One could expand the diagram even more. The String object really does not 
directly contain the text; instead, like other objects, it contains a fixed number of 
fixed-size fields. And one of those fields refers to a data structure containing the 
characters. 
 
The above three heap diagrams represent the same underlying data structure: 
three objects: a Cons pointing to a String and to an Empty. Depending on the 
context, we may draw a more compact or more detailed representation. 
 
Each object uses up some bytes of heap memory. The size of an object is the sum 
of the sizes of its fields, plus a few extra bytes for meta information (e.g., about 
the object's class). Note that the methods are not stored in the object. 
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Global Memory 
Static fields (class fields) are not stored in the objects. Static fields are stored in 
the global memory area. In other languages, Java's static fields could be called 
"global variables". There is only one variable (one white rectangle) for a static 
field—it is associated with the class. There can be many variables (many white 
rectangles) for an instance field—it is associated with each instance (object) of 
that class. Here is an example class, and the diagram of the global memory: 
 
public class Maze { 
public static final double TILE_SIZE = 50.0; 

} 
 

 
If we want to draw a static field that does not have a primitive type (like double) 
but a reference type (like Color), we have to draw the heap memory (in which the 
object is placed) in addition to the global memory (where the static fields are): 
 
public class Maze { 
public static final double TILE_SIZE = 50.0; 
public static final Color BACK_COLOR = rgb(255, 0, 0); 

} 
 

 
 
Draw the memory diagram showing the static fields of class Colors. Include the 
eight Color objects on the heap. What are the values of all the instance fields? 
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Draw the memory diagram at the time Num has been initialized (remember that 
Double is a class, assume it has an instance field named value of type double): 
 
public record Num(int a, String b, Double c) { 
  public static final Num ONE = new Num(1, "1", 1.0); 
  public static final Num TWO = new Num(2, "2", 2.0); 
} 
 

 
 
Which of these statements are correct? 
☐ If class X declares an instance field, each instance of class X will contain a 

variable for that field. 
☐ If class X declares a static field, the global memory area will contain that one 

variable for that field. 
 
Draw the memory diagram at the time Rels has been initialized: 
 
public interface Rel {} 
public record LessThan() implements Rel {} 
public record Equal() implements Rel {} 
public record GreaterThan() implements Rel {} 
public class Rels { 
  public static final Rel LT = new LessThan(); 
  public static final Rel EQ = new Equal(); 
  public static final Rel GT = new GreaterThan(); 
} 
 
Note that the three record classes don’t have any instance fields. 
 

 
 
Which of these statements are correct? 
☐ A variable of type T can point to an object of a subtype of T. 
☐ A variable of type T must point to an object of exactly that type T. 
  

Global Memory Heap Memory

Global Memory Heap Memory
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Stack Memory 
Whenever you call a method, some memory gets allocated on the call stack for 
storing the values of its parameters, the value of this (for instance methods), and 
the values of its local variables. When the method returns, that memory gets freed 
again. That piece of memory, which holds all the variables for the method to 
execute, is known as stack frame or activation record. 
 
At any given point in time of an execution, the stack contains a number of stack 
frames, stacked on top of each other. The first method called (to start the 
execution) is at the bottom of the stack. The most recently called method is on 
top. Whenever the currently executing method returns, its stack frame (which is on 
the top of the stack) is erased, and the stack shrinks a bit. 
 
public record Demo(int iv) { 
  public static final int SV = 2; 
  public static int sm(int smp) { 
    return new Demo(3).im(4); 
  } 
  public int im(int imp) { 
    final int lv = 5; 
    // draw memory diagram at this point 
    return lv + imp + SV + iv; 
  } 
} 
 
Here is the memory diagram at the point in the execution indicated by the 
comment, for the call Demo.sm(1). Write the value into each variable: 
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Mutation 
Up to now our variables were not actually variable. They were constant. They 
were names we gave to specific values. Like in math. If we say x = 3 in algebra, we 
cannot suddenly say x = 4. If in a given context we say x = 3, we can replace x with 
3 or 3 with x, without this affecting our conclusions. 
 
In algebra there is no notion of time. Things don't change. If in a given context we 
define something, that definition holds everywhere within that context. 
 
Pure functional programming (e.g., in BSL or Haskell), and the subset of Java we 
used up to now, works exactly like algebra. Whatever we define in a given context 
will stay like that throughout that entire context. 
 
A name is bound to a value in a variable declaration (e.g., final double width = 
200;) the same way a name is bound to a value in algebra (w = 200). 
 
Now that we introduce mutation, this changes! Now variables are indeed 
variable. They can change value! If in a given context we read x = 3, we can NOT 
assume that x and 3 are interchangeable within that context. We only know that x 
is 3 from that point in the execution until the variable's value gets changed. We 
suddenly have to reason about time! 
 
We cannot just look at variables as names for values anymore, but we have to look 
at variables as names for memory locations. A memory location is a small piece 
of memory (e.g., one, two, four, or eight bytes). The value of the variable is stored 
in that memory. If at any time during the program's execution we go and store 
some other value in that memory, the value of the variable changes. 
 

Our world so far Our world from now on 
IMMUTABLE MUTABLE 
 
NAME ⟶ VALUE 
 

 
NAME ⟶ MEMORY LOCATION ⟿ VALUE 

public static int run(int distance) { 
return step(distance) 
     + step(distance); 

} 

public static void run(int distance) { 
step(distance); 
distance = distance + 10; 
step(distance); 

} 
rule [LocalVarDec]: 
   <k> T:Type X:Id; => . ...</k> 
   <env> Env:Map => Env[X <- V] </env> 

 

rule [LocalVarDec]: 
   <k> T:Type X:Id; => . ...</k> 
   <env> Env:Map => Env[X <- L] </env> 
   <store>... .Map => (L |-> default(T)) ...</store> 
   <nextLoc> L:Int => L +Int 1 </nextLoc> 

 

In Memory Diagrams, Mutability Means Replacing Contents of Boxes 
No matter whether we operate in a mutable or an immutable world, throughout 
program execution, in a memory diagram we have to create new boxes, and we 
have to initialize those boxes to some value. 
Activity Memory Area Kind of boxes created 
Loading a class   
Allocating an object   
Calling a method   
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In our immutable world, in memory diagrams the content of a rectangular box 
never changed. When we created a new box, we wrote a value in it, and we never 
had to change what we wrote. 
 
Now that we enter a mutable world, and we look at the rectangular boxes as 
memory locations, we have to worry about the contents of boxes getting 
overwritten (by some code using an assignment, =). 
 
For now, we limit mutation to the stack. We call this local mutation. If we change 
the value of a local variable, we only need to worry about this for the duration of 
the method call. Once the method returns, its stack frame gets popped off the call 
stack (and thus its local variables vanish). Local mutations won't affect other code 
in other methods! They are less dangerous. 
 

In a Mutable World, Order Matters 
Given that now time matters (when figuring out the value of a variable), order 
matters as well. The following two code snippets contain the same three 
statements, just in a different order. Write down the value of y at the end: 
1 
2 
3 

int x = 10; 
int y = 2 * x; 
x = 5; 

int x = 10; 
x = 5; 
int y = 2 * x; 

 y now is: y now is: 
 
Draw the stack frames (for a memory diagram), after executing each code line: 
1  

 
 

2  
 

 

3  
 

 

 

In a language without mutability, we wouldn't really need to worry about order 
(we couldn't write this kind of code, and we wouldn't really need to write it). 
 

Mutation is a Side Effect 
Our immutable world was pure. If we evaluated an expression, we got back a 
value, and that's ALL that happened. The process of evaluation didn't change 
anything. It just "read" things and produced a result. 
 

In the new, mutable world, we can't rely on this anymore. Besides producing a 
value, evaluating an expression can also mutate state (change variable values). We 
say that the expression has a side effect. In a pure world, there are no side 
effects. 
 

Draw the expression tree of this crazy 
but legal expression: 
 

x + (x = 2) + (x = 9 + x) 
 

Assume int x = 5; 
 

Annotate each node with its value. 
And what's the value of x afterwards?  
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A Helpful Loop Statement: For-Each Loops 
Let’s meet the probably most common kind of loop: the for-each-loop. Let's look 
how we can use such a loop for mapping. 
 

Three Ways to Map 
Let's look at three different ways (recursion, HoF, loop) to implement the same 
mapping computation. The computation should convert a sequence of integers 
into a sequence of strings, by calling String.valueOf(…) on each element. 
 
In the methods below, underline the similar pieces: 
 
Using recursion: 
public static Sequence<String> is2ss(Sequence<Integer> numbers) { 
return isEmpty(numbers) 
  ? empty() 
  : cons( 
      String.valueOf(first(numbers)), 
      is2ss(rest(numbers)) 
    ); 

} 
 
Using a HoF – the higher-order function map: 
public static Sequence<String> is2ss(Sequence<Integer> numbers) { 
  return map(n -> String.valueOf(n), numbers); 
} 

 
Using a for-each loop: 
public static Sequence<String> is2ss(Sequence<Integer> numbers) { 
Sequence<String> result = empty(); 
for (final Integer number : numbers) { 
  result = cons(String.valueOf(number), result); 
} 
return result; 

} 
 

How does this last one, with the loop, work? The first statement declares a local 
variable result of type Sequence<String> and initializes its value to an empty 
sequence. The second statement is a compound statement (a statement that may 
contain other statements). More specifically, it is a for-each loop. The last 
statement is a return-Statement, which returns whatever value is stored in the 
local variable result at this time. 
 
for (HEADER) BODY 
 
Let's look at the for-each loop in detail. It consists of the keyword for, a header, 
and a body. The header specifies over which data structure to iterate (in this case, 
we iterate over the numbers). The body specifies what to do for each element. 
 
for (                              ) BODY  <- write the header of the above loop 
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The header of a for-each loop consists of two parts: it declares a local variable 
(here of type Integer with name number), and after the colon (:) comes an 
expression providing an iterable data structure (e.g., a Sequence). The for-each 
loop will then iterate through the iterable, and for each element it will (1) assign 
the element to the specified local variable and (2) execute to loop body. The loop 
body may read and use the current value from that local variable. 
 
for (HEADER)   <- write the body of the above loop 
                                                

 
The loop body usually is a statement sequence (zero or more statements put 
inside curly braces {…}). 
 
Let's trace through the execution of is2ss(of(1, 2)), showing the three involved 
variables and their values at each point in the execution: 

Statement  \ Variable values after statement: numbers number result 
Sequence<String> result = empty(); of(1, 2)  empty() 
    

for header: number = 1 of(1, 2) 1 empty() 
result = cons(String.valueOf(number), result) of(1, 2) 1 of("1") 
    

for header: number = 2 of(1, 2) 2 of("1") 
result = cons(String.valueOf(number), result) of(1, 2) 2 of("2", "1") 
    

for header: determines that the repetition is done of(1, 2)  of("1", "2") 
return result; of(1, 2)  of("1", "2") 

 
Indicate which of the following observations are correct: 
☐ There are three variables in the stack frame of this method: the parameter 

numbers, the local variable result, and the local variable number 
☐ The black = are initializations, the red = are changes 
☐ The parameter numbers comes into existence and gets initialized each time 

the method is called 
☐ Within a single execution of the method, the value of the parameter numbers 

stays constant 
☐ The local variable result comes into existence, and gets initialized, when 

the first statement gets executed 
☐ The for header executes multiple times 
☐ The for body executes multiple times 
☐ The for header executes once more than the body 
☐ The local variable result gets initialized before the loop, and gets changed 

each time the loop body executes – we use it to accumulate the result 
☐ The local variable number does not exist before and after the loop 
☐ The local variable number comes into existence, and gets initialized, each 

time the loop header executes (except the last time) 
☐ Within a single iteration of the loop body, the value of the local variable 

number remains constant 
☐ Within a single iteration of the loop body, the value of the local variable 

result gets changed (i.e., the variable is not guaranteed to have the same 
value throughout an individual execution of the loop body) 
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Let's juxtapose the for-each-loop and the use of map: 
map HoF for-each loop 
 
return map( 
  (Integer n) -> String.valueOf(n), 
  numbers 
) 

Sequence<String> result = empty(); 
for (final Integer n : numbers) { 
result = cons( 
  String.valueOf(n),  
  result 
); 

} 
return result; 

 

Can you see the similarities? 
 

For each element in the numbers sequence, we assign it to variable n (which has 
type Integer) and we convert the Integer into a String. 
 
Can you see the differences? 
 

What is different in the method that uses a loop? 
☐ The method body consists of multiple statements 
☐ We declare and initialize a local variable (result) 
☐ We change the value (mutate) of the local variable using an assignment 
 
On a deeper level, using loops necessitates the following concepts: 
 

• mutable state – the name result refers to a variable, thus, if we look at 
the value of result at different points in time during a single method 
execution, we will see different values 

• control-flow – the execution of a method body now cannot be understood 
anymore by a simple bottom-up evaluation in a tree, but it now requires 
the more complex—possibly cyclic—execution of statements in a graph, 
where each of those statements can contain multiple expressions. 
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Statements 
Imperative languages like Java provide different kinds of statements. We learned 
about return statements in our first week. Later we learned about assert 
statements. Now we learn about several other kinds of statements. 
 

Syntax: Composing Statements 
The body of a method consists of a sequence of statements. Each statement could 
be preceded by and followed by another statement. The statements of a method 
are executed in order from top to bottom. 
 
Here is a single statement and a sequence of three statements, in Java and in the 
"block-based" visual language Scratch. Scratch was developed for beginners. To 
make it obvious how to compose statements, the blocks in Scratch look a bit like 
puzzle pieces: statement blocks snap together in a top-to-bottom sequence. 

 Java Scratch 
Statement move(10); 

 
Statements 
composed into a 
sequence 

turnRight(15); 
move(10); 
turnLeft(15); 

 
 
Some statements, such as if, while, for, and for-each, are compound 
statements. Compound statements, in addition to being preceded by and 
followed by a statement, also contain other statements. 
 
Here is an example of a compound statement (an if-statement), in Java and in 
Scratch. Note the hexagonal hole in Scratch, which corresponds to the place 
where you need to plug in the condition (an expression producing a boolean): 

 Java Scratch 
Compound 
Statement 

if (CONDITION) BODY 

 
Compound 
Statement 
composed with 
other statements 

move(10); 
if (CONDITION) { 
  turnRight(15); 
turnLeft(15); 

} 
move(10); 

 
 
So we just learned how we can compose statements. This description and the 
pluggability-constraints provided by Scratch blocks focus on syntax: how 
statements can be composed. The description did not really explain the 
semantics: what those statements mean, what they will do. 
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Semantics: Control-Flow Graphs 
With compound statements, the control flow becomes more complex than a 
straight-line sequence. We can represent the control flow within a method with a 
directed graph: a control-flow graph. Non-programmers might call this a “flow 
chart”. Compiler people call it a CFG. 
 

  
 
The nodes of a control-flow graph are statements. The edges tell us from which 
statement execution can go to which next statement. Most nodes are drawn as 
rectangles. 
 
A control-flow graph must have one entry node (where the execution of the 
method starts), and one exit node (where the execution of the method ends). We 
draw those special nodes as circles containing the letter "e" (entry) and "x" (exit). 
 
Some nodes will have multiple outgoing edges (meaning multiple possible next 
statements). In assembly code, such nodes correspond to branch instructions 
(e.g., IFEQ in IJVM), where, depending on some condition, they either go one way or 
another. In source code, such nodes correspond to the headers of loops and 
conditional statements. In a CFG, such nodes are drawn with a diamond shape, 
and their outgoing edges are labeled with the value of the condition. 
 
Execute the above control-flow graph showing the values in all variables after 
each node executed: 

After this node Value of seq Value of s Value of sum 
e of(1, 2)   
Seq s = seq;    
int sum = 0;    
!s.isEmpty()    
    
    
    
    
    
    
    
x    

Seq s = seq;

return sum;

s = s.rest()

sum += s.first()

int sum = 0;

!s.isEmpty()

e

x

false true
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Structured Programming 
A control-flow graph can look like a heap of spaghetti. If you look at programs 
written in assembly languages, this can often be the case. There can be edges 
from any node to any other nodes. Figuring out the order in which things execute 
can be like following a spaghetti on your plate from its start to its end. It's a mess. 
This kind of code is called “spaghetti code”. 
 
Most modern languages are designed so that you CANNOT write spaghetti code. 
You cannot go from any statement to any other statement (i.e., there is no goto-
statement, no arbitrary jumping around). Modern languages force you to structure 
the control flow. This is called structured programming. 
 
In structured programming there are three constructs for structuring control flow: 
sequence, selection, and repetition. 
 

Sequence 
The simplest structured programming construct is the sequence of statements. 
 
Draw the control-flow graph of this method (include the entry and exit nodes): 
public static int m(int a, int b) { 
  int sum = a + b; 
  int product = a * b; 
return analyze(sum, product); 

} 

 

 

Selection 
Conditional statements, such as if-statements and if-else-statements, allow us 
to execute certain other statements only if a given condition holds. 
 
Draw the control-flow graph of this method (include the entry and exit nodes): 
public static int m(int a, int b) { 
if (b == 0) { 
  return 0; 
} 
return a / b; 

} 

 
 
 
 
 
 

 
Draw the control-flow graph of this method (include the entry and exit nodes): 
public static int m(int a, int b) { 
if (a > b) { 
  return "GT"; 
} else { 
  if (a < b) { 
    return "LT"; 
  } else { 
    return "EQ"; 
  } 
} 

} 
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We have been using conditionals for a long time. However, we limited ourselves to 
conditional expressions. Now we can also use conditional statements. They 
simply provide a different way to express conditional computations. 
 

Refactor between the two variants: 
Conditional Expressions Conditional Statements 
return isEmpty(numbers) 
  ? empty() 
  : cons( 
      "" + first(numbers), 
      i2s(rest(numbers)) 
    ); 

if 
 
   

return  
 
 
 
 

if (isEmpty(numbers)) { 
  return empty(); 
} else { 

if (first(numbers) >= 0) { 
    return cons( 
      first(numbers), 
      pos(rest(numbers)) 

  ); 
} else { 
  return pos(rest(numbers)); 
} 

} 
 

In professional programming it's customary to use conditional operators for short 
expressions. When expressions are longer, and especially when we need to nest 
conditionals, we usually use nested if-statements instead. 
 

Repetition 
The structured programming construct we can use for repetition is the loop. Java 
provides several kinds of loops, like for-each-loops, for-loops, or while-loops. 
 

Draw the control-flow graph of this while-loop: 
public static int sum1( 
  Sequence<Integer> seq 
) { 
  int total = 0; 
  Sequence<Integer> r = seq; 

while (!r.isEmpty()) { 
  total = total + r.first(); 
  r = r.rest(); 
} 
return total; 

} 

CFG: 

 

Draw the control-flow graph of this while-loop: 
public static int sum2( 
  Sequence<Integer> seq 
) { 
  int total = 0; 
  int i = 0; 

while (i < length(seq)) { 
  total = total + get(i, seq); 
  i = i + 1; 
} 
return total; 

} 

CFG: 
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Indicate which of the following claims are correct: 
☐ Methods sum1 and sum2 on the previous page are semantically equivalent 
☐ Methods sum1 and sum2 have the same algorithmic complexity 
☐ Methods sum1 and sum2 both mutate local variables 
☐ Method sum1 does not use an index to access the elements 
☐ Method sum2 uses an index to access the elements 
 
Refactor the above methods to use reduce or map or filter: 
public static int sum3(Sequence<Integer> seq) { 
 

  return 
 

} 
 
Some repetitive computations cannot be expressed with reduce, map, or filter. 
But every repetitive computation can be expressed using recursion. 
 
Refactor this recursion into a while-loop: 

Recursion while-Loop 
public static int sum(int i) { 

return i != 0 
  ? sum(i - 1) + i 
  : 0; 

} 

public static int sum(int i) { 
  int s =   ; 

while (      ) { 
  s = s     ; 
  i =        ; 
} 
return s; 

} 
 
Instead of a while-loop with index, it usually makes sense to use a for-loop. 
Refactor this while-loop with index into a for-loop with index: 
while-Loop for-Loop 
public static String stars1(int n) { 

String s = ""; 
int i = 0; 
while (i < n) { 
  s = s + "*"; 
  i = i+1; 
} 
return s; 

} 

public static String stars2(int n) { 
  String s =   ; 

for (int i =   ;      ;       ) { 
  s = s + "*"; 
} 
return s; 

} 

CFG: CFG: 
 
 
 
 
 
 
 
 
 
 

 
Indicate which of the following claims are correct: 
☐ Methods stars1 and stars2 are semantically equivalent 
☐ Given a CFG, we cannot tell whether it came from a while-loop or a for-loop 


