
 Composition in Java  Workbook 10
  

    Page 1 of 6 LuCE Lugano Computing Education

Research Lab

More Mutation, Data Flow 
Student name: 
 
 

TA signature: 
 
 

 
Photo by Robert Lukeman on Unsplash 

 

Concepts Check off understood concepts, connect related concepts, label connections 
 
 
 

 
 
 
Make sure you can explain each concept and each connection, you can provide 
examples, and you can identify them in a given piece of code. 
 
 
 
 

Names Circle the methods, underline the types 
System • PrintStream • print • println 
	  

◼  Assign◼  Side Effect

◼  Variable ◼  Value

◼  Mutation ◼  Local

◼  Expression
◼  Expression 

Tree

◼  Statement◼  Store

◼  Load

◼  Pure

◼  Impure
◼  Output



 Composition in Java  Workbook 10
  

    Page 2 of 6 LuCE Lugano Computing Education

Research Lab

Ways to Mutate a Variable 
To mutate a variable, we need to assign a new value to it. For this, we can use the 
assignment operator (=). Java also provides other operators that mutate variables. 
 
Complete this table. Assume at the start all variables contain the value 10: 

Code Operator name Value of variable Value of expression 
a = 1 Simple assignment   
b += 1 Compound assignment   
c -= 1 Compound assignment   
d++ Postfix-increment   
++d Prefix-increment   
d-- Postfix-decrement   
--d Prefix-decrement   

 
All those operators have side effects: beside evaluating to a value, they also 
mutate a variable. 
 
Complete this table by refactoring the given expression: 

Simple Assignment Compound Assignment Increment/Decrement 
a = a + 1   
b = b - 1   
c = c + 2   
d = d – 2   

 
Compound assignment operators are rarely used in Java, because the most 
common case, adding or subtracting 1, is supported by the shorter increment and 
decrement operators. There are other compound assignment operators than += 
and -=, but they are extremely rarely used. 
 
That's all there is! There's no other way to mutate variables in Java. 

The Identity of an Object – Comparing References 
The == operator compares two things. But watch out: If you use == for comparing 
reference values, you compare the references (identities, addresses) of the 
objects, not the contents (fields) of the objects! 
 
public record Coordinate(int x, int y) { } 
 

Code Stack & Heap Evaluates to 
new Coordinate(1, 1) ==  
  new Coordinate(2, 2) 

 
 

 

new Coordinate(1, 1) ==  
  new Coordinate(1, 1) 

 
 

 

Coordinate c =  
  new Coordinate(1, 1); 
c == c 

  

Coordinate c1 =  
  new Coordinate(1, 1); 
Coordinate c2 = c1; 
c1 == c2 

  



 Composition in Java  Workbook 10
  

    Page 3 of 6 LuCE Lugano Computing Education

Research Lab

Abuse of Mutation 
We started looking at mutation last week. We focused on mutation within a 
method, i.e., local mutation (specifically, mutation of local variables). 
 
Here are two different ways to implement the Swiss Flag: 
Graphic swissFlag =  
  rectangle(200, 60, WHITE); 
swissFlag =  
overlay( 
  swissFlag,  
  rotate(90, swissFlag) 
); 

swissFlag =  
overlay( 
  swissFlag,  
  rectangle(320, 320, RED) 
); 

final Graphic horizontalBar =  
  rectangle(200, 60, WHITE); 
final Graphic cross =  
overlay( 
  horizontalBar,  
  rotate(90, horizontalBar) 

  ); 
final Graphic swissFlag =  
overlay( 
  cross,  
  rectangle(320, 320, RED) 
); 

 
The left one uses mutation, the right one does not. There really is little reason for 
using mutation in this case. We have three different statements, each one 
executes once, and each one produces a specific Graphic. 
 
☐  Defining three immutable variables instead of one mutable variable does 

not actually increase memory consumption (the compiler will optimize). 
☐  In the right code, simply by reading the variable name, we know what it 

contains (if the name is well chosen). 
☐ In the left code, if we reorder the last two statements, the compiler will not 

complain, but the code will break (it won't produce a Swiss flag). 
☐ In the right code, if we reorder the statements in a way that would break the 

code, the compiler will complain. If we reorder the statements in a way that 
does not break the code, the compiler will be happy. 

☐  In the left code, after each statement swissFlag means something different! 
First it means a white rectangle, then it means a white cross, and then it 
means a Swiss flag. 
 

This is a swissFlag: This is a swissFlag: This is a swissFlag: 

 
 

 
 
Really??? 

 

This is a bad use of mutation. It's unnecessary. Either find appropriate names, or 
inline the subexpressions. 



 Composition in Java  Workbook 10
  

    Page 4 of 6 LuCE Lugano Computing Education

Research Lab

Statements Want Side Effects 
Expressions implicitly pass information to other expressions when they are 
nested. 
 
A subexpression produces a value, and that value flows into the hole of its parent 
expression. This information flow is well organized into a tree (the expression 
tree), where children pass values to their parents. 
 

Expression Expression Tree (with values) 
(a + b) > (a * b) 
 
 
 

 
 
 
 
 
 

 

Assume the above expression is placed 
in the body of a method: 
 
public static boolean e( 
  int a, int b 
) { 
  return (a + b) > (a * b); 
} 
 

Draw the stack frame of e(2, 3): 

 
Statements do not have that kind of connection with each other: A statement that 
sits above another statement, and thus executes before the other statement, does 
not implicitly pass values to the other statement. 
 
If you want to pass data from one statement to the other, you have to do that 
explicitly via variables: one statement needs to store the value in a variable, and 
the other statement can then load that value from the variable. 
 
int sum = a + b;      // store value in variable sum (side effect) 
int product = a * b;  // store value in variable product (side effect) 
return sum > product; // load value from variables sum and product 
 

Assume the above statements are 
placed in the body of a method: 
 
public static boolean s( 
  int a, int b 
) { 
  int sum = a + b; 
  int product = a * b; 
  return sum > product; 
} 

Draw the stack frame of s(2, 3): 

 
A statement without a side effect cannot pass information to other statements: 
 
Math.sin(x);          // no effect (computes sin(x), throws result away) 
return "I don't know"; 



 Composition in Java  Workbook 10
  

    Page 5 of 6 LuCE Lugano Computing Education

Research Lab

Information-Flow Into and Out Of Pure Methods 
A pure method takes parameters and produces a result that it returns (the return 
value). Parameters and return values are the only way for information to flow into 
and out of a pure method. 
 

 
 

No Parameters 
If we do not want parameters, we can define a method with an empty parameter 
list. Developers usually don't write pure methods that don't take parameters, 
because those methods are boring: they always return the same value. Developers 
replace such methods with constants. Still, we can use them, e.g., if somewhere we 
need a function object that produces a constant: 
 
public static int one() { return 1; } 
 

No Return Value 
If we do not want a return value, we can write the word void where the return type 
goes. Developers often say "the return type is void", but strictly speaking, in Java 
void is not a type. A void method does not return a value. If we use a return-
statement inside a void method, the return-statement cannot contain an 
expression (because we can’t return a value). 
 
public static void noRetVal(int p) { return; } 
 
Does it make sense to write a pure void method? Why or why not? 
 
 

 

No Parameters, No Return Value 
We could even define a method that does not have parameters and does not have 
a return value: 
 
public static void noParamsNoRetVal() { return; } 
 
Write a pure method that does not have parameters and does not have a return 
value, and that contains more than one statement: 
public static 
 
 
 
 

 
We haven't used void methods in prior worksheets, because all the methods we 
created in the worksheets were pure. The only place where we wrote void 
methods was in some labs, where we wrote “main” methods. Those are methods 
that get called when a Java program starts, that finish when the program ends, 
and that cannot return any value. We need “main” methods to run Java code from 
the command line with java. 

MethodParameters Return Value



 Composition in Java  Workbook 10
  

    Page 6 of 6 LuCE Lugano Computing Education

Research Lab

Information-Flow Into and Out Of Impure Methods 
Impure methods can do everything that pure methods can do, but additionally, 
they also can: 

• read class and instance variables 
• input data from the outside world (e.g., from a file) 
• write class and instance variables  
• output data to the outside world (e.g., to a file) 

 

 
These four kinds of impurities wield great power; but they are not without risks. 
They make reasoning about your program harder. Use them with caution. 
 

Output 
Let's focus on one of the four kinds of impurities: output. In Java you can output 
text to the terminal in various ways; the most common is to call the println 
method of class PrintStream. The System class provides a static field named out, 
which refers to a PrintStream object that is connected to your terminal (to what is 
known as "stdout" of your running Java process). If you call println on that object, 
the String you pass to println will be printed in your terminal. 
 
Write a statement that prints "I have an effect on the world!": 
 
 

 
The name println stands for "print line". This is because at the end of the text, it 
prints a magical "newline" character, so that subsequent output will appear on the 
next line. The PrintStream class also has a method print, which works like println 
but does not print a "newline" in the end. 
 
Write three statements, one that prints "No", one that prints a space, and one that 
prints "Way!". They must produce all output on the same line, and the last one 
must move to a new line: 
 
 
 
 
 
 

 
The PrintStream class provides many overloaded versions of println and print. 
Besides the one that takes a String, there also is one for most primitive types. 

MethodParameters Return Value

Change of Program State & Output
(Side Effect)

Access of Program State & Input


