
 Composition in Java Workbook 11

 Page 1 of 12 LuCE Lugano Computing Education

Research Lab

Inheritance
Student name:

TA signature:

Photo by Liane Metzler on Unsplash

Concepts Check off understood concepts, connect related concepts, label connections

Make sure you can explain each concept and each connection, you can provide
examples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
There are no new names this week

 Composition in Java Workbook 11

 Page 2 of 12 LuCE Lugano Computing Education

Research Lab

Constructors
A constructor contains code that is executed to initialize a newly created object.
This means, it will initialize all the instance variables of the object.

When you write new Xxx(), the constructor of class Xxx is called. It can do
whatever it wants, but usually it will set each instance variable of the newly
created object to its initial value.

A constructor is similar to a method, but there are some differences.
Complete the following table (check the appropriate boxes):
 Constructor Method
Can freely be named? ☐ yes / ☐ no ☐ yes / ☐ no
Can have parameters? ☐ yes / ☐ no ☐ yes / ☐ no
Has return type? ☐ yes / ☐ no ☐ yes / ☐ no
Can be overloaded? ☐ yes / ☐ no ☐ yes / ☐ no
Can contain statements? ☐ yes / ☐ no ☐ yes / ☐ no

The name of the constructor is the name of the class.

In some way, a constructor is similar to a class (i.e., static) method, because the
constructor call does not involve an object (new Xxx(), not o.xxx()).

But in some other way, a constructor is similar to an instance method: once it
starts running, there will be an object, accessible via the this local variable.

public class Point {
 …
 public Point() { // here is a constructor -- note: no return type!
 this.x = 10; // initialize the x instance variable
 this.y = 3; // initialize the y instance variable
 }

 public int getX() {
 return this.x;
 }
}

Instance Variables
In the above code the constructor initialized the x and y instance variables. But in
Java, variables have to be declared before we can play with them! Where and how
were those variables declared?? We hid that behind the …! Here’s the secret:

public class Point {
 private final int x; // declare the x instance variable
 private final int y; // declare the y instance variable
 …
}

 Composition in Java Workbook 11

 Page 3 of 12 LuCE Lugano Computing Education

Research Lab

Desugaring Records into Plain Old Classes
So far, when we wanted to create objects with specific fields, we defined record
classes. However, we also can use plain old classes.

Complete the code on the right, so the class corresponds to the record class given
on the left:
public record Pos(int x, int y) {
}

public class Pos {

 private final int x;

private final int y;

 public Pos(int x, int y) {

 }

 public int x() {

 }

 public int y() {

 }

 public boolean equals(Object o) {
 // let’s skip this for now
 }

 public int hashCode() {
 // let’s skip this for now
 }

 public String toString() {

 }
}

All the code on the right is generated automatically for you by the Java compiler
when you declare a record class.

Draw a memory diagram (just the heap) of the object created in both cases:
new Pos(1, 2) new Pos(1, 2)

A record class is simply a convenient, shorter form to declare a traditional Java
class! We call such shorter ways to write code syntactic sugar. Java records are
syntactic sugar. They are sweet!

 Composition in Java Workbook 11

 Page 4 of 12 LuCE Lugano Computing Education

Research Lab

Information Hiding: public vs. private
When you write a class, you can decide, for each field and each method, whether it
should be accessible from code outside the class (public), or whether it should
only be accessible from code inside the class (private).

The following code shows a good design, where the time instance variable of class
TimeStamp is private, and the behaviors one might want to do with a TimeStamp are
provided through public methods:

public class TimeStamp {
 private final int time;
 public boolean before(TimeStamp other) {…}
}

public record TimeInterval(TimeStamp begin, TimeStamp end) {
 public boolean before(TimeInterval other) {
 return this.end.before(other.start); // no dependency on time
 // return this.end.time < other.start.time; // not possible (time private)
 }
}

Here is a bad design, where the field is public, and the code of the TimeInterval
class plays with the time field directly:

public class TimeStamp {
 public final int time;
}

public record TimeInterval(TimeStamp begin, TimeStamp end) {
 public boolean before(TimeInterval other) {
 return this.end.time < other.start.time; // bad: dependency on time
 }
}

This bad design has some negative consequences, for example, it prevents the
TimeStamp code from being refactored into a class that stores time as a BigDecimal
(which might be necessary if we needed to support arbitrarily long intervals of
time in the future).

As a guideline, all instance fields should be private. And methods that are only of
“internal use” should be private as well.

Which of the following claims are correct?
☐ private fields/methods are not visible outside the class
☐ private instance fields/methods are not visible outside the object
☐ class C { private int f; public int m(C o) { return o.f; } }

The access of o’s field f is possible

 Composition in Java Workbook 11

 Page 5 of 12 LuCE Lugano Computing Education

Research Lab

Inheritance of Implementation
A class can implement an interface I, and then must* implement the methods
prescribed by I. A class can also extend another class C, and then must*
implement the methods prescribed by C.

In both cases, the class is a subtype of the other thing (of interface I, of class C).

However, there is a difference! When a class extends another class, it also inherits
the implementation from that class. If the superclass defines a field, the subclass
inherits it. If the superclass implements a method, the subclass inherits that
method, including the implementation.

Draw the memory diagrams for both cases:
public interface Super {

 public String sing();

}

public class Super {
 private final String song;
 public Super() {song = "lalala";}
 public String sing() {
 return song;
 }
}

public class Sub implements Super {
 private final String song;
 public Sub() {song = "lalala";}
 public String sing() {
 return song;
 }
 private final int volume = 10;
 public int getVolume() {
 return volume;
 }
}

public class Sub extends Super {

 private final int volume = 10;
 public int getVolume() {
 return volume;
 }
}

Super p = new Sub();
String s = p.sing();
Sub b = new Sub();
int v = b.getVolume();

Super p = new Sub();
String s = p.sing();
Sub b = new Sub();
int v = b.getVolume();

Draw stack frame and heap:

Draw stack frame and heap:

What are the fields that go into the objects of type Sub?

 Composition in Java Workbook 11

 Page 6 of 12 LuCE Lugano Computing Education

Research Lab

Abstract Methods, Abstract Classes
What is the difference between the methods we up to now defined in interfaces
versus those we defined in classes?

The methods in interfaces are abstract. So far, all the methods we defined in
classes were concrete.

Differences between abstract and concrete methods: Answer each cell (YES/NO):
 Abstract methods Concrete methods
Have a header (name,
parameters, return type)

Have a body
Have an implementation

When defining an interface, one does not need to use the abstract modifier when
declaring methods. Normal interface methods are abstract by definition.

public interface Turtle {
 public Turtle move();
 public abstract Turtle turnLeft();
}

Both methods (move and turnLeft) in the above Turtle interface are abstract.

Even classes can declare abstract methods. Thing is a class that defines a
concrete method getName and an abstract method (see, no body!) describe.

public abstract class Thing {
 public abstract String describe();
 public String getName() { return “something”; }
}

If a class declares any abstract method, the class itself must be abstract. What
does that mean? If a type is abstract, we cannot instantiate it. We cannot create
instances of the abstract class Thing. Why? Because, what would happen if we
created a Thing object and called the abstract method describe on it?

new Thing().describe() // what should this do???

For the same reason, we cannot instantiate an interface:

new Turtle().turnLeft() // what should this do???

There is no code for method turnLeft (and no code for method move). This is no
problem, because Turtle is an interface, and thus is very abstract, and we cannot
instantiate it, and thus we cannot end up with an object for which we don’t have
the implementation of a method we can call on it.

 Composition in Java Workbook 11

 Page 7 of 12 LuCE Lugano Computing Education

Research Lab

When extending a class, the subclass doesn't just inherit the requirements
imposed by abstract instance methods, but it also inherits the implementations
of concrete instance methods. And it inherits the instance fields.

Draw the class diagram of this class hierarchy (no need to draw Object):
public interface Exp {

public int eval();
}
public record Lit(int val) implements Exp {

public int eval() { return val; }
}
public abstract class BinOp implements Exp {
 private Exp left;
 private Exp right;

public BinOp(Exp left, Exp right) {
 this.left = left; this.right = right;
}

 public abstract int compute(int l, int r);
 public int eval() {
 return compute(
 left.eval(), right.eval()
);
 }
}
public final class Add extends BinOp {

public Add(Exp left, Exp right) {
 super(left, right);
}
public int compute(int l, int r) {
 return l + r;
}

}
public final class Sub extends BinOp {

public Sub(Exp left, Exp right) {
 super(left, right);
}
public int compute(int l, int r) {
 return l – r;
}

}

Which of the following claims are correct?
☐ new Exp() creates a new object of type Exp
☐ new Lit(1) creates a new object of type Lit
☐ new BinOp(new Lit(1), new Lit(2)) creates a new object of type BinOp
☐ Exp is a supertype of Add
☐ Sub is a subtype of Add
☐ Sub cannot be subtyped
☐ Exp is a subtype of Object
☐ We can substitute a Sub for a BinOp

 Composition in Java Workbook 11

 Page 8 of 12 LuCE Lugano Computing Education

Research Lab

Draw a memory diagram (heap) of new Add(new Lit(1), new Lit(2))

Final Methods, Final Classes
While abstract methods have to be eventually implemented in subclasses, final
methods CANNOT be implemented (overridden) in subtypes.

public class BinOp {
 …
 public final int eval() {
 return compute(left.eval(), right.eval());
 }
}

In the above BinOp class, the method eval is final. This means that subclasses
(like, e.g., class Add extends BinOp) cannot possibly override the eval method.
The eval method is cast in stone. We can be 100% sure that it will work the way it
is implemented in class BinOp for all subclasses of BinOp.

Not only can we make a method final to protect it from being overridden in a
subclass, but we can even make the entire class final, to protect it from being
subclassed at all:

public final class Password { … }

Nobody can create a subclass of Password. If you expect a Password, you are 100%
certain you’re getting an instance of the Password class, and not an instance of
some “hacked” subclass of Password. The Java library contains several final
classes, amongst them class String. It’s not possible to extend class String. A
variable of type String always refers to an object of exactly the type String.

If you want to be cautious, you will make all methods final and all classes final,
unless you have a clear reason for not doing so.

Note: final for methods/classes is different from immutability (final variables).
final methods cannot be overridden. final variables cannot change their value.

 Composition in Java Workbook 11

 Page 9 of 12 LuCE Lugano Computing Education

Research Lab

Interface, Abstract Class, Concrete Class, Final Class
Java provides various degrees of abstraction for classes:

Kind of Type Can have
abstract
instance
methods

Can have
concrete
instance
methods

Can have
instance
fields

Can be
instantiated

Can be
subtyped

Interface
Abstract Class
Concrete Class
Final Class

The declarations of abstract, concrete, and final classes look almost the same:

public abstract class MyAbstractClass extends … implements … { … }
public class MyConcreteClass extends … implements … { … }
public final class MyFinalClass extends … implements … { … }

Interfaces are at the top of class hierarchies. An interface can be subtyped by
another interface (interface Sub extends Super {…}). Below interfaces come
abstract classes. Below that usually come the concrete classes, which can be
instantiated because they have no abstract methods. The final classes must be at
the bottom of the class hierarchy, they cannot have further subtypes.

The Root of the Class Hierarchy – java.lang.Object
In Java every reference type is a subtype of class java.lang.Object. You don't
specify this. It's implicit. (Strangely, even an interface is a subtype of Object.)

As a consequence of every class extending java.lang.Object, every class inherits
the methods implemented in Object, amongst them:

public String toString()

Because of this, you can get a string representation of any object. And because
Object.toString is not final, subclasses can override the toString method to
provide their own, more appropriate string representations. What strings do the
following expressions produce?

new Object().toString()
new String().toString()
"ABC".toString()
new Lit(1).toString()
new Add(
 new Lit(2),
 new Lit(3)
).toString()

Another method in java.lang.Object allows comparing this object to any other
object. Records implement equals by comparing whether all their fields are equal.

public boolean equals(Object other)

Subtyping & Polymorphism: The Liskov Substitution Principle

 Composition in Java Workbook 11

 Page 10 of 12 LuCE Lugano Computing Education

Research Lab

We have seen subtyping: for example, we saw that a Cons is a (specific kind of)
Seq.

public interface Seq {
 public abstract boolean isEmpty();
}
public record Cons(String first, Seq rest) implements Seq {
 public boolean isEmpty() { return false; }
}

This means that whenever we expect a Seq, we are happy if we receive a Cons:

public static int length(Seq s) { … } // length expects a Seq
length(new Cons(…)); // length is happy with a Cons

We can substitute a Cons for a Seq. We can do this, because the definition of our
Cons guarantees that it will have all the methods that Seq promises. Our length
method, that expects a Seq, will be happy with the given Cons, because the given
Cons will support everything the length method expects to be able to call.

This substitutability applies to every kind of variable (not just a parameter):

Seq s; // s is expected to point to a Seq
s = new Cons(…); // s points to a Cons object

Barbara Liskov (who got an honorary PhD from USI in 2011) received the Turing
Award for her contributions to informatics, including for the idea now known as
the Liskov Substitution Principle:

𝑆 ≤ 𝑇 → ∀𝓍: 𝑇. 𝜙(𝓍) → ∀𝓎: 𝑆. 𝜙(𝓎)

If S is a subtype of T (e.g., Cons is a subtype of Seq), then if some property ɸ holds
for values of type T (Seq) that property must also hold for values of type S (Cons).

This principle is the basis of object-oriented programming, subtyping, and
polymorphic method calls. It guarantees that if a variable o has type Sprite, and
there are various subtypes of Sprite (e.g., Pacman and Ghost), and type Sprite has
a method step, we can compile o.step(), and no matter whether o points to a
Pacman, a Ghost, or an object of some other subtype of Sprite, the class of the
object o points to will have an implementation of method step.

public interface Sprite { public abstract void step(); }
public class Pacman implements Sprite { public void step() {…} }
public class Ghost implements Sprite { public void step() {…} }

Sprite s = new Pacman();
s.step(); // which exact method will this call?
s = new Ghost();
s.step(); // which exact method will this call?
Seq<Sprite> sprites = of(new Pacman(), new Ghost(), new Ghost());
for (Sprite sprite : sprites) {
sprite.step(); // which exact method will this call?

}	

 Composition in Java Workbook 11

 Page 11 of 12 LuCE Lugano Computing Education

Research Lab

“State” Design Pattern
Let’s model a media player with a play/pause button ⏯ and a stop button ⏹.
Pressing these buttons allows you to put your player into three different states:
stopped, playing, and paused.

Draw a diagram of a “state machine”, with a circle for each possible state. For each
circle, draw arrows going from that circle for each button that could be pressed.
The arrows point to the state that button press would cause the player to go into.

State machines are common when modeling real-world processes and systems
(traffic lights, vending machines, …). Let’s model our media player in Java. We need
two methods that can handle the two buttons, and a method that can produce the
text to show on the player’s display:

public record Player(State state) {
 …
 public Player onPlayPause() {
 // action depends on state
 return state.onPlayPause(this);
 }
 public Player onStop() {
 // action depends on state
 return state.onStop(this);
 }
 public String getDisplay() {
 // action depends on state
 return state.getDisplay();
 }
}

Our Player can be in one of three different states. Its behavior (what happens
when you call a method) is different in each state. We could use a conditional in
each of the methods, with a case for each possible state. But in OOP we prefer
polymorphism over conditionals. This specific use of polymorphism is called the
State Design Pattern. It involves a class hierarchy, with a subclass for each state.

public interface State {
 public Player onPlayPause(Player player);
 public Player onStop(Player player);
 public String getDisplay();
}

Now each state (each subclass of State) can handle the buttons differently.
Here is the implementation of the playing state (the Playing subtype of State):

Player
state
onPlayPause
onStop
getDisplay
changeState

State

onPlayPause
onStop
getDisplay

Stopped

onPlayPause
onStop
getDisplay

Playing

onPlayPause
onStop
getDisplay

Paused

onPlayPause
onStop
getDisplay

Player is associated with State

 Composition in Java Workbook 11

 Page 12 of 12 LuCE Lugano Computing Education

Research Lab

public record Playing() implements State {
 public Player onPlayPause(Player player) {
 return player.changeState(new Paused());
 }
 public Player onStop(Player player) {
 return player.changeState(new Stopped());
 }
 public String getDisplay() {
 return "Paused. Press ⏯ to pause, ⏹ to stop.";
 }
}

What does this code mean? When the media player is in the playing state,
pressing the ⏯ button pauses it (transitions the player into the paused state), and
pressing the ⏹ button stops it (transitions the player into the stopped state).

Write the code for the Paused and Stopped implementations of State. Look at the
diagram of the state machine on the prior page:
public record Paused

}
public record Stopped

}

We left out a method from our Player class. That method is called to transition to
a different state. Write that method:
public record Player(State state) {
 public Player changeState

