
 Composition in Java Workbook 12

 Page 1 of 12 LuCE Lugano Computing Education

Research Lab

Non-Local Mutation
Student name:

TA signature:

Lorenz Attractor, Dschwen, Wikimedia Commons, Creative Commons Attribution 2.5 Generic license	

	

Concepts Check off understood concepts, connect related concepts, label connections

Make sure you can explain each concept and each connection, you can provide
examples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
Option • None • Some • none • some • fold	

 Composition in Java Workbook 12

 Page 2 of 12 LuCE Lugano Computing Education

Research Lab

The special variable this
We already encountered the special variable this.

Which of the following claims are correct?
☐ this exists in every instance method
☐ this exists in every constructor
☐ this exists in every static method
☐ this holds a reference to the object the method or constructor operates on
☐ this gets initialized when the method or constructor is called

When there is no ambiguity, this can be left out. Rewrite class C on the right, the
sweeter, “sugared” version of the code, leaving out this wherever possible:

Desugared Sugared (short and sweet):
public class C {
 private final int x;
 private final int y;

 public C(int x, int initialY) {
 this.x = x;
 this.y = initialY;
 }

 public int x() {
 return this.x;
 }

 public int y() {
 return this.y;
 }

 public Pair<C,C> befriend(C o) {
 return new Pair<C,C>(o, this);
 }

 public Pair<C,C> meAndMyself() {
 return this.befriend(this);
 }

 public boolean same(C other) {
 return this == other;
 }
}

public class C {
 private final int x;
 private final int y;

 public C(int x, int initialY) {

 }

 public int x() {

 }

 public int y() {

 }

 public Pair<C,C> befriend(C o) {

 }

 public Pair<C,C> meAndMyself() {

 }

 public boolean same(C other) {

 }
}

Draw the memory diagram of new C(1,2).meAndMySelf(); just before method
befriend returns. The stack starts with meAndMyself.

 Composition in Java Workbook 12

 Page 3 of 12 LuCE Lugano Computing Education

Research Lab

Getter methods
When we define a record class, we provide its components:

public record Person(String name, int age) { }

Java automatically desugars this class, adding an instance variable and a getter
method for each component.

public class Person {
 private final int age;
 …
 public int age() {
 return age;
 }
 …
}

If we have a Person object, and we want to access its age, how can we do that? Let’s
assume three scenarios:

Outside class Person Inside class Person,
on different object

Inside class Person,
on same object

public class Demo {

 public static int m(
 Person p
) {

 return p.age();
 }
}

public class Person {
 …
 public int m(
 Person p
) {
 assert p != this;
 return p.age();
 }
}

public class Person {
 …
 public int m() {

 return this.age();
 }
}

Check in which scenarios we can legally replace the accessor method call with an
instance variable access?
☐ return p.age; ☐ return p.age; ☐ return this.age;

In the last example, could we leave out the this? In both cases? Briefly explain!

Getter methods are automatically generated when we define record components.
If we create classes that are not records, we can manually write getter methods.
Usually, we use the name getXxx() instead of just xxx(), for a getter of field xxx.

Note that it is not necessary to have getter methods. Often it is not even a good
idea! If all your classes have getter methods for all their fields, then your code
might not be very well designed.

 Composition in Java Workbook 12

 Page 4 of 12 LuCE Lugano Computing Education

Research Lab

On Trees, Acyclic Graphs, and Cyclic Graphs
There are some fundamental data structures you want to use in your programs.

Tree Acyclic Graph Cyclic Graph

Trees: No Sharing, No Cycles
We can build a tree by defining a record class and using a single expression to
construct the tree:

public interface Tree {}
public record Node(char label, Sequence<Tree> children) implements Tree { }

Write an expression that uses the given types to create the red tree above:
new

Acyclic Graphs: Sharing, No Cycles
We can build an acyclic graph by defining a record class and using a way to name
a substructure so we can refer to that substructure multiple times (sharing):

public interface DAG {}
public record Node(char label, Sequence<DAG> children) implements DAG { }

Write the code that uses the given types to create the brown acyclic graph above:

Can you do so in a single expression? Why, or why not?

 Composition in Java Workbook 12

 Page 5 of 12 LuCE Lugano Computing Education

Research Lab

Cyclic Graphs: Sharing, Cycles
In addition to sharing (two variables pointing to the same object), a cyclic graph
also allows cycles.

Try to build a cyclic graph using record classes in a similar way to how we did it
above for trees and acyclic graphs:
public interface Graph {}

public record Node(

Given your classes, try to write the code that uses the given types to create the
blue cyclic graph above:

We seem to have a chicken-and-egg problem here. If we want to create a Node object
D that refers to another Node object I, we first need I. But if we want to create I, we
first need D, because I refers to D. We have a cycle.

If we want to create cyclic object structures, we cannot do so in one go. We have to
first create the objects, and only then set them up so they point to each other. To
establish the cycle, we might need to mutate at least one of the involved objects.

Local vs. Non-Local Mutation
Mutating an object means mutating one of its instance variables. Unlike the
mutation of a local variable or a parameter, which is only observable within a
specific method, the mutation of an instance variable could be observable
anywhere in the program, even if the variable is private. Class variables are
similarly problematic.

If we mutate a local variable or parameter, we say this is local mutation.

If we mutate an instance variable or a class variable, we say this is non-local
mutation.

 Composition in Java Workbook 12

 Page 6 of 12 LuCE Lugano Computing Education

Research Lab

Simple cyclic structures
Let’s look at some simple, minimalistic cyclic structures. Once we understand how
they work, we will then see more realistic cases.

The simplest cyclic structure is an object referring to itself (a self-loop):

public class It {

 private It other;

 public It() { }

 public void setOther(It other) {
 this.other = other;
 }
}

It o = new It();
o.setOther(o);

A cycle can be bigger, though! Two objects of the same class forming a cycle:

It a = new It();
It b = new It();
a.setOther(b);
b.setOther(a);

Cycles can involve objects of different types:

public class Ping {
 private Pong pong;
 public Pong() { }
 public void setPong(Pong pong) { this.pong = pong; }
}
public class Pong {
 private Ping ping;
 public Ping() { }
 public void setPing(Ping ping) { this.ping = ping; }
}

Ping pi = new Ping();
Pong po = new Pong();
pi.setPong(po);
po.setPing(pi);

Note that in all the above cases, we mutate an instance variable (with an
assignment =) after the object has been created. We provide a setter method
(setOther, setPong, setPing) that performs that mutation for us.

 Composition in Java Workbook 12

 Page 7 of 12 LuCE Lugano Computing Education

Research Lab

Another Example of Cyclic Data: Your Social Network
Except for the previous page, we have not yet had a need for creating cyclic data
structures. But in the real world, cyclic structures are prevalent. One example: your
network of friends!

public class Person {

 private Sequence<Person> friends;

 public Person() {
 friends = empty();
 }

 …

}

Friendships usually are bidirectional: if A is my friend, I am A’s friend. It’s a cycle!

Let’s write a method that allows us to establish such a connection between two
persons:

public static void formFriendship(Person a, Person b) {
 a.friends = cons(b, a.friends);
 b.friends = cons(a, b.friends);
}

For this method to work, we had to mutate an instance variable! Specifically, we had
to change the value in a.friends (in the first assignment). On top of this, we also
changed the value in b.friends (in the second assignment).

We don’t necessarily have to establish only bidirectional friendships. We also could
allow the creation of unidirectional “friendships”: I might like A, but A might not like
me:

public void addFriend(Person a) {
 this.friends = cons(a, this.friends);
}

We still could establish a cycle:

Person x = new Person();
Person y = new Person();
x.addFriend(y);
y.addFriend(x);

But we also could establish a unidirectional friendship:

Person orsino = new Person();
Person olivia = new Person();
orsino.addFriend(olivia);

 Composition in Java Workbook 12

 Page 8 of 12 LuCE Lugano Computing Education

Research Lab

The Risks of Non-Local Mutation (Mutation of Fields)
If a method mutates a field, this change can be observable after that method
returns. This can be very risky.

Example: A mutable Date
Assume a mutable Date class. The mutator method, later, allows you to move the
date by the given number of days:

public class Date {
 private int unixDay; // days since 1 January 1970
 public Date(int year, int month, int day) { … }
 public void later(int days) { unixDay = unixDay + days; }
 public String toString() { … }
}

Now assume you are planning your graduation. You already know the date of your
graduation, and you want to organize a party 2 days later:

public class Plans {
 public static void organize(Date graduation) {
 masterPlan(graduation, party(graduation));
 }
 private static Date party(Date graduation) {
 Date party = graduation;
 party.later(2);
 return party;

 }
 private static void masterPlan(Date graduation, Date party) {
 // what is the program state at this point?

 …
 }
}

Draw the Memory Diagram at the marked point in the execution of this program,
assuming the program starts with the call Plans.organize(new Date(1970, 1, 11)).
Assume that the constructor of Date will set the field unixDay to 10. Don’t draw the
stack frame for the constructor of Date and erase the frames of the methods that
returned. Is there anything unexpected happening?

 Composition in Java Workbook 12

 Page 9 of 12 LuCE Lugano Computing Education

Research Lab

Updating our computational model
We have been using various diagrams (notional machines) to reason about different
aspects of programs. We can consider them effectively as our computational model
of Java. As we introduced more features of Java we had to introduce new diagrams
to help us reason about those features. For example, when we introduced
statements (e.g., loops), we had to introduce the Control-Flow Graph to reason
about control-flow over multiple statements in a method. We can then use them to
reason about programs in other languages too, so about programming in general!

What diagrams have we seen? Summarize, for each diagram, the aspects of
programming they focus on.

Sometimes, new features required us to extend diagrams that were shown before
in simpler forms. For example, in Workbook 9 we introduced mutation of local
variables and we had to extend the Memory Diagram to show local variables (in the
Stack). In addition to that, we showed how every variable (including fields) has
always a name, a type, and a value. At that point we showed how, in Java, variables
of primitive types (e.g., int or double) directly contain the values themselves but
variables of reference types (e.g., String) contain references to objects.
We represented a reference as an arrow pointing to the corresponding object or
with an @ followed by a number (the object’s address). The result of evaluating an
expression that produces an object is not “the object” but a reference to it.
Understanding that distinction is essential when we mutate fields! Therefore, it’s
essential to extend all the diagrams that show values to represent the objects with
@ followed by a number.

Draw an Expression Tree for masterPlan(graduation, party(graduation)).
Annotate each node with its type. Annotate each node with its value, assuming the
same program execution illustrated in the memory diagram on the previous page.

 Composition in Java Workbook 12

 Page 10 of 12 LuCE Lugano Computing Education

Research Lab

Draw the Dynamic Call Tree for Plans.organize(new Date(1970, 1, 11)).
Using again the context we used for the memory diagram, show all argument values
for each call of a method with parameters, and indicate the return value of each
call right below the call.

Another example: A mutable Hand in a game
The method on the left has a lot of code duplication. Your teammate refactored it:

Original code Your teammate's refactored code
public class Controller {
 public Game buildGame() {
 Game initialGame = new Game();
 initialGame.addHand(new Hand(7));
 initialGame.addHand(new Hand(7));
 initialGame.addHand(new Hand(7));
 initialGame.addHand(new Hand(7));
 initialGame.addHand(new Hand(7));
 return initialGame;
 }
}

public class Controller {
 public Game buildGame() {
 Game initialGame = new Game();
 Hand hand = new Hand(7);
 for (int i = 0; i < 5; i++) {
 initialGame.addHand(hand);
 }
 return initialGame;
 }
}

If Hand is mutable, is the refactored code equivalent to the original code? Why?

Sketch an implementation of (1) a mutable Hand class with a method draw that adds
a card to a hand, (2) the class Game with a method addHand, and (3) a fix in your
teammate's refactoring of the method buildGame.

 Composition in Java Workbook 12

 Page 11 of 12 LuCE Lugano Computing Education

Research Lab

Handling Errors
While programming, our functions may have to deal with parameter values for
which they cannot produce a meaningful result. We could handle this with assert
statements, but they would terminate the program. If we don’t want to terminate in
such a situation, we need a way to deal with these “errors”. For example, take a
look at this method to compute the average of a sequence of numbers:

double average(Sequence<Double> nums) {
 return sum(nums) / length(nums);
}

What can go wrong?

A non-solution: return a special value
In some cases, programmers try to fix this situation by returning a special,
distinguished value (also dubbed a sentinel). For example, consider a method

<T> int indexOf(T element, Sequence<T> values)

that returns the position of a given element in a sequence. When the element is not
found, it is customary to return -1 as a special value.

While this is convenient, it is also extremely error prone. All the pieces of code that
call indexOf need to remember that there is a special value that needs to be
handled. Programmers are humans, they forget to deal with the special case, and
then the program inevitably crashes.

Even worse, returning a special value is NOT a solution. Which special value would
you return in the above average method when nums is an empty sequence to avoid
performing a division by zero?

No value of type double is a good one, negatives included! Returning -1.0 as it is
done in indexOf does not work, because Sequence.of(-2, 0) has exactly average
-1.

Java’s historical solution: exceptions
Historically, Java programmers extensively use exceptions to signal problematic
cases (such as the ones above). You have already probably witnessed exceptions
in the wild while programming: did you get a NullPointerException? Or an
IndexOutOfBoundsException?

These exceptions, however, only manifest at runtime, while the program is running.
Can we do better? And prevent all these situations statically?

 Composition in Java Workbook 12

 Page 12 of 12 LuCE Lugano Computing Education

Research Lab

The Option type
There is an elegant idea that addresses this kind of situation and is increasingly
getting adopted in modern programming languages: the idea of an Option.

The idea is the following: instead of promising to always return a value of type T,
we specify as a return type Option<T>.

We cannot instantiate an Option<T>. We can either have a value of the type Some<T>
or a value of type None<T>.

JTamaro provides a static factory method Options.none() to create a None<T> value.
Correspondingly, there is a static factory method Options.some(T) that creates
Some<T> values starting from values of type T.

Refactor the implementation of average to return values of the Option type:

Option<Double> average(Sequence<Double> nums) {
 return
 ?
 :
}

Once we get a value of type Option<T>, what can we do with it?

We cannot extract the value of type T we would like, because there might not be
one! Instead, we are forced to handle both cases.

An object of class Option<T> has the following instance method:

<R> R fold(Function1<T, R> someCase, R noneValue);

When Option contains some value of type T, the function someCase is executed to
produce a value (of a possibly different type R).
When it contains none, fold just returns the provided noneValue (also of type R).

Use fold to produce a string representation of a Student, such that it returns strings
like “Luca – GPA: 5.5” and “Igor – No grades yet” depending on the situation.
record Student(String name, Sequence<Double> grades) {
 public String toString() {
 return name + " – " +

 }
}

