
 Composition in Java Workbook 13

 Page 1 of 6 LuCE Lugano Computing Education

Research Lab

Mutable Lists & Maps
Student name:

TA signature:

Concepts Check off understood concepts, connect related concepts, label connections

Make sure you can explain each concept and each connection, you can provide
examples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
java.util.List • java.util.LinkedList • java.util.Map • java.util.TreeMap •
java.util.Set • java.util.TreeSet	

 Composition in Java Workbook 13

 Page 2 of 6 LuCE Lugano Computing Education

Research Lab

Mutable Collections
Our Sequence interface and its implementations are immutable. If you want to
“modify” a sequence, you have to create a new one. For example, the following
cons instance method takes a value, and returns a new sequence with that value
as its first element and the original sequence (this) as the rest:

public interface Sequence<T> {
 …
 public Sequence<T> cons(T value);
}

Thus, “knowing” a sequence means knowing that exact sequence with that exact
content. If you modify the content, you get a new sequence.

public void Sequence<Person> befriend(Sequence<Person> friends, Person f) {
 Sequence<Person> newFriends = friends.cons(f);
 // draw stack and heap state at this point
 assert newFriends != friends;
 return newFriends;
}

Draw a memory diagram (stack and heap) if the above method is called like this:
befriend(of(new Person(1), new Person(2)), new Person(9))

Draw all Cons, Empty, and Person objects. Don’t draw stack frames that already got
popped. Assume the following Person type: public record Person(int id) {}.

In the above method, friends and newFriends refer to two different objects!

With our immutable design, any method that wants to “modify” a sequence needs
to return the modified sequence. In general, in a pure immutable world, any
method that wants to “mutate” something has to create and return a new object.

 Composition in Java Workbook 13

 Page 3 of 6 LuCE Lugano Computing Education

Research Lab

There is a way around this! But it comes at a cost. Now that we have mutable
instance variables, we can create methods that don’t need to return results of
“mutation”. For example, we can create a class List that has a mutable instance
variable of type Sequence. The List class then has mutator methods (like adding
and removing an element) that mutate the instance variable. In our List example,
these mutator methods create a new sequence representing the modified list, and
store that new sequence in their mutable instance variable.

Complete the following code (use cons):
public class List<T> {
 private Sequence<T> contents;
 public List() {
 contents = empty();
 }
 public void prepend(T element) {

 }
}

Can you see the mutation? And can you see how the prepend method does not
need to return the modified list? Because we don’t create a new list; we mutate
the existing list!

This design allows us to keep a “stable” reference to a list object. There is one
object. It represents a list that can change over time. When we add or remove
elements, it is still the same list. We don’t need to pass around a reference to a
new list, because the old and new list are represented by the same List object.

List<Person> friends = new List<Person>();
// now friends is empty
friends.prepend(new Person(11));
// now friends contains person 11
friends.prepend(new Person(22));
// now friends contains person 11 and person 22

The drawback of this design is the general problem of non-local mutation: a given
List object may represent a list with certain contents at one point in time, but a
list with different content at another point in time. Reasoning about our program
(for example to find and fix a bug) now requires keeping track of state changes
over time (“Do you mean my friends before or after I befriended Jim?”). That can
be quite challenging. A list at a time is not necessary equal to the same list later.

Draw the memory diagram (stack and heap) at the end of the above code:

friends

 Composition in Java Workbook 13

 Page 4 of 6 LuCE Lugano Computing Education

Research Lab

Java Collection Classes: java.util.List
The Java Collection classes (in package java.util) implement all kinds of data
structures, such as lists, sets, and maps.

The interface java.util.List has various subtypes that provide different kinds of
implementations (with different costs and benefits).

Here is a part of the List interface and one class that implements it: LinkedList.
Draw a class diagram:
public interface List<E> {
 public abstract int size();

public abstract E get(int index);
public abstract int indexOf(Object o);
public abstract E set(int index, E element);
public abstract void add(E element);
public abstract E remove(int index);
//…

}

public class LinkedList<E> implements List<E> {
 public int size() { … }
 //…
}

There is one fundamental difference between our Sequence class and Java's List. It
has nothing to do with inheritance. What could that be?

Draw the memory diagrams (stack and heap) at the end of the following scenarios.
Assume public class LinkedList<E> … { private Node<E> first; … }
and class Node<T> { private T item; private Node<T> next; … }:
List<String> people =
 new LinkedList<String>();
people.add("You");
people.add("Me");
int myIndex =
 people.indexOf("Me");

Sequence<String> nobody =
 empty();
Sequence<String> justMe = cons("Me", nobody);
Sequence<String> youAndMe = cons("You", justMe);
int myIndex =
 youAndMe.indexOf("Me");

An object of type List is mutable. That is, we can append elements to a list, and
the same List object that used to be empty is now not empty anymore!

 Composition in Java Workbook 13

 Page 5 of 6 LuCE Lugano Computing Education

Research Lab

Another Mutable Collection: Map
Sometimes we need to maintain a mapping from a key to a value. For example, we
may need to map names to phone numbers, or countries to population counts. We
can represent a mapping with a data structure or with a function. In both cases, if
we get a key, we need to be able to map it to the corresponding value.

Mapping from a country to its population count with a function:
public static int populationByCountry(String country) {
 return
 country.equals("Switzerland") ? 8796669 :
 country.equals("Italy") ? 58870762 :
 country.equals("Germany") ? 83294633 : -1;
}
int swissPopulation = populationByCountry("Switzerland");

Mapping from a country to its population count with a data structure:
Map<String,Integer> populationByCountry = …;
populationByCountry.put("Switzerland", 8796669);
populationByCountry.put("Italy", 58870762);
populationByCountry.put("Germany", 83294633);
int swissPopulation = populationByCountry.get("Switzerland");

When using a function, we simply call the function. When using a map data
structure, we first create the data structure (allocating a Map object, and then
putting all the key-value pairs in it), and then look up a value by its key.

Mark whether each of the following claims holds or not:

Yes No Claim
❏ ❏ Encoding a mapping in a conditional (a conditional expression or

statement, in a function body) means the mapping is static – it is
defined by the developer and baked into the code (“hard-coded”).

❏ ❏ Encoding a mapping in a data structure means the mapping is
dynamic – it could be changed at runtime (e.g., put on the map).

❏ ❏ The type of the key and the type of the value must be the same.

Implementing a Map Class
Implement the get method of the following Map class (use a while-loop):
public class Map {
 private Sequence<Pair<K,V>> keyValuePairs;

 public Option<V> get(K key) {

 }
}

 Composition in Java Workbook 13

 Page 6 of 6 LuCE Lugano Computing Education

Research Lab

Java Collection Classes: java.util.Map
The interface java.util.Map has various subtypes that provide different kinds of
implementations (with different costs and benefits).

Here is a simplified version of Map and one class that implements it: TreeMap. Draw
a class diagram:
public interface Map<K,V> {
 public abstract V get(Object key);

public abstract V put(K key, V value);
public abstract V remove(Object key);
//…

}

public class TreeMap<K,V> implements Map<K,V> {
 public V get(Object key) { … }
 //…
}

Using Maps
You want to build a multi-player game. You have a Player class to represent a
player (including their score, and information about their current status).

At the beginning one can enter the names of all players, and the application will
create a Player object for each player. Later, during the game, the user can enter
the name of a player in the user interface (as a String), and the application then
needs to find the corresponding Player object.

Complete the implementation of the method bodies:
public class Game {

 private Map<String,Player> playersByName;

 public Game() {

 }

 public void addPlayer(String name) {
 Player player = new Player();

 }

 public static Player getPlayerByName(String name) {

 }
}

Java Collection Classes: java.util.Set
Besides lists and maps, the Java library also provides sets. The interface Set and
implementations such as TreeSet.

Sets are like lists, but they disallow duplicate elements, and they don’t provide
indexed access; instead they provide a method boolean contains(E value).

