
 Composition in Java Workbook 14

 Page 1 of 10 LuCE Lugano Computing Education

Research Lab

Null, Arrays, Streams
Student name:

TA signature:

Based on Photo by Philippe Murray-Pietsch on Unsplash

Concepts Check off understood concepts, connect related concepts, label connections

Make sure you can explain each concept and each connection, you can provide
examples, and you can identify them in a given piece of code.

Names Circle the methods, underline the types
java.util.ArrayList, java.util.stream.Stream	

 Composition in Java Workbook 14

 Page 2 of 10 LuCE Lugano Computing Education

Research Lab

Null – Tony Hoare’s Billion Dollar Mistake
Turing Award winner Tony Hoare* introduced null references in ALGOL W in 1965
“simply because it was so easy to implement”. In a 2009 presentation** he talks
about that decision and considers it his “billion-dollar mistake”.

References (arrows in memory diagrams) can be implemented as addresses.
Hoare decided that the address 0 (the “null reference”) had a special meaning:
it means that the reference does not refer to any object.

Person myFriend = new Person();
Person yourFriend = null;

Programming languages like Java provided a special literal to denote null
references: null.

Draw the memory diagram (stack, heap) of the state at the end of the above code:

Assume we now execute the following code:

public static String announceGuest(Person guest) {
 return "Let me introduce " + guest.getName();
}

What could happen when we call that method?

Rewrite the announceGuest using Option, avoiding the billion dollar mistake:
public static
 return
}

Default Values of Reference Types
In Java, instance variables are automatically initialized to the default value of
their type: an int to 0, a double to 0.0, a boolean to false, a reference to null.

Why? The default value of a type is the value of that type that is represented using
all zero bits. This allows a cheap way to initialize fields of newly allocated objects
to their default values: before objects are allocated, all the bits that make up an
object are reset to zero at once. Thus, when allocating an object, there is no need
for code to explicitly set instance variables to any value, because the memory in
which all of those variables exist will have been zeroed out. Of course, if you do
want to initialize an instance variable, you can still do that; but you don’t have to.

* https://amturing.acm.org/award_winners/hoare_4622167.cfm
** https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

 Composition in Java Workbook 14

 Page 3 of 10 LuCE Lugano Computing Education

Research Lab

Arrays – Low-Level Fixed-Length "Lists"
Besides various convenient collection classes, Java also provides a low-level way
to store fixed-length lists: arrays. An array, like an object, is created on the heap.
And like an object, it cannot shrink and grow. An object has a fixed set of fields,
an array has a fixed set of elements. Fields are named memory locations inside
the object. Elements are numbered memory locations inside the array.

While the type of a list is specified as List<T>, for a given element type T, the type
of an array is specified as T[]. Unlike for generic type parameters (like the T in
List<T>), the element type of an array can be any type, even a primitive type.

Draw a memory diagram (heap) showing the result of each expression. The
expression in brackets determines the size (number of elements) of the array:
new Pos(1, 2) new int[3] new String[2]

When allocating an array like above, its elements get initialized to the default
value of the element type (e.g., 0 for int, null for String). You can allocate and
initialize an array in one expression as follows:

new int[] {1, 2} new String[] {"Hi", "Ho", "Go"}

To read the value from an array element, you can write ARRAY[INDEX]. Instead of
ARRAY, write an expression that evaluates to an array, and instead of INDEX, write
an expression of type int that evaluates to a value greater or equal to zero.

To write the value of an array element, you can write ARRAY[INDEX] on the left
hand side of an assignment operator: words[5] = "ciao".

To determine the length of an array, you can access its immutable length field.

Here is a comparison of a Java List (e.g., ArrayList) and a Java array:
 ArrayList class Array
Type ArrayList<T> T[]
Variable Declaration ArrayList<String> o; String[] a;
Allocate new ArrayList<String>() new String[5]
Length o.size() a.length
Read element o.get(4) a[4]
Write element o.set(1, "One") a[1] = "One"
Append o.add("More") not possible
Insert o.add(2, "between") not possible
Remove o.remove(2) not possible

What is the value of the following expressions? Briefly explain.
(new int[2])[1 - 1] new int[3 + 2].length
new int[] {1, 2}[1] new String[0].length

 Composition in Java Workbook 14

 Page 4 of 10 LuCE Lugano Computing Education

Research Lab

Using Arrays to Implement our own ArrayList Class
If Java did not provide an ArrayList class, we probably would want to write our
own. The main benefit of using an ArrayList over using a plain array is that
ArrayLists can grow, while arrays have a fixed size.

Complete the following implementation. The size field keeps track of how many
elements we have in our list. The current capacity (length of the elements array)
can be bigger than the number of elements we currently contain. If we use all the
elements of the array, that is, if size == elements.length, and we need to add a
new element, we have to "grow" the list. We do that in the grow method by
allocating a new, bigger array, and by copying (you may want to use a for-loop)
the element values from the old array to the new array.
public class MyStringArrayList {

 private int size;
 private String[] elements;

public MyStringArrayList(int capacity) {
 assert capacity >= 0;

 elements = new String[capacity];
 size = 0;
 }
 public int size() {
 return size;
 }
 public String get(int index) {
 return elements[index];
 }
 public void set(int index, String value) {
 elements[index] = value;
 }
 public void add(String value) {
 if (size >= elements.length) {
 grow();
 }
 elements[size] = value;
 size++;
}
private void grow() {

}

}

You had to decide how large the new array should be. You could make it just one
element longer. That would work, but performance would not be optimal (you
would copy the entire array for each newly appended element). A better strategy
is to double the size whenever you need to grow.

 Composition in Java Workbook 14

 Page 5 of 10 LuCE Lugano Computing Education

Research Lab

Sorting an Array
Tony Hoare didn’t just invent null, but he also invented something much more
beneficial: quicksort!

Here is a quick sort implementation similar to the one in Workbook 8. This uses a
recursive data structure (a Sequence). The function is pure and the data structure
is immutable.

public static <T> Sequence<T> sort(

Function2<T,T,Boolean> lessEqual,
Sequence<T> values

) {
 if (isEmpty(values)) {
 return empty();
 } else {
 T pivot = first(values);
 Sequence<T> smaller = filter(x -> lessEqual.apply(x, pivot), rest(values));
 Sequence<T> greater = filter(x -> !lessEqual.apply(x, pivot), rest(values));
 return concat(
 sort(lessEqual, smaller),
 cons(
 pivot,
 sort(lessEqual, greater)
)
);
}

Let’s write an implementation using arrays. The function does not return any
value; its computation happens “in place”, it has the side-effect of mutating the
array that is passed in as an argument. The function is impure (it modifies
variables on the heap) and the data structure (the array) is mutable.

public static <T> void sort(Function2<T,T,Boolean> lessEqual, T[] values) {
 return sort(lessEqual, values, 0, values.length - 1);
}
public static <T> void sort(Function2<T,T,Boolean> lessEqual, T[] values,
 int low, int high
) {
 if (low >= high || low < 0) { return; }
 int pivotIndex = partition(lessEqual, values, low, high);
 sort(lessEqual, values, low, pivotIndex - 1);
 sort(lessEqual, values, pivotIndex + 1, high);
}
public static <T> int partition(Function2<T,T,Boolean> lessEqual, T[] values,
 int low, int high
) {
 T pivot = values[high];
 int i = low;
 for (int j = low; j < high; j++) {
 if (lessEqual.apply(values[j], pivot)) {
 swap(values, i, j);
 i = i + 1;
 }
 }
 swap(values, i, high);
 return i;
}

 Composition in Java Workbook 14

 Page 6 of 10 LuCE Lugano Computing Education

Research Lab

Implement the swap method that is used by the partition method above:
public static

}

What is the difference between the sequence-based implementation and the
array-based implementation in terms of pivot selection?

Reversing an Array
Implement a method that gets an array and returns a new array that contains the
elements of the original array in reverse order. Use a for-loop with index:
public static String[] reverse(String[] original) {

}

Implement a method that gets an array and reverses its contents in-place. Use a
for-loop with index:
public static void reverse(String[] original) {

}

Searching an Array
Complete this method that performs a binary search in an array (it assumes that
the array is sorted):
public static Option<Integer> binarySearch(String[] values, String key) {
 int low = 0;
 int high = values.length - 1;
 while (low <= high) {
 int mid = (high + low) / 2;
 int comparison = values[mid].compareTo(key);
 if (comparison < 0) {
 low = mid + 1;
 } else if (comparison > 0) {
 high = mid – 1;
 } else {
 return
 }
 }
 return
}

 Composition in Java Workbook 14

 Page 7 of 10 LuCE Lugano Computing Education

Research Lab

“Two-Dimensional Arrays” – Arrays of Arrays
How does one represent a two-dimensional structure, such as a tile-based game
board (e.g., the Maze for pacman) or a matrix?

You could use a sequence of sequences of elements:

Sequence<Sequence<Tile>> board = of(
 of(WALL, FLOOR, WALL),
 of(WALL, FLOOR, FLOOR)
);

You can do the same by creating an array of arrays of elements:

Tile[][] board = {
 { WALL, FLOOR, WALL },
 { WALL, FLOOR, FLOOR }
};

Draw a memory diagram (stack and heap) of the above array-based board:

Implement a method that reduces the board into a multi-line string (use "\n" to
terminate each line), looking like this:

X.X
X..

Use for-loops (with indices named row and col):
public static String renderToString(Tile[][] maze) {

}

 Composition in Java Workbook 14

 Page 8 of 10 LuCE Lugano Computing Education

Research Lab

“Multi-Dimensional Arrays” – Arrays of Arrays of …
In Java you can create arrays with any number of dimensions. More precisely, you
really can only create one-dimensional arrays, but you can put references to
arrays inside those arrays, and that nesting allows you to create arbitrarily deeply
nested array structures.

Draw a memory diagram (stack and heap) at the end of this method:

public static void demo() {
 int i; // primitive int
 int[] vi; // reference to array of int
 int[][] vvi; // reference to array of arrays of int
 int[][][] vvvi; // reference to array of arrays of arrays of int
 i = 5;
 vi = new int[3];
 vvi = new int[2][4];
 vvvi = new int[1][2][2];
 vvvi[0][1] = vvi[1];
 vvi[1][2] = 42;
 int x = vvvi[0][1][2];
}

As you can see in your diagram, there can be sharing when using arrays. This
means there is aliasing: multiple ways to refer to the same memory location.

The diagram doesn’t show any cycles. Can you create cycles with only arrays?

 Composition in Java Workbook 14

 Page 9 of 10 LuCE Lugano Computing Education

Research Lab

Dereference Checks and Bounds Checks
Let’s play with the following method:

public static int get(int[] values, int index) {
 return values[index];
}

What happens in the following situations?

Invocation Return value Exception
get(new int[3], 3)
get(new int[0], 0)
get(new int[3], -1)
get(null, 0)

In Java, every array access is bounds-checked. And every dereference operation
(following a reference to an object or array) is checked against null. If an index is
out of bounds, Java throws an IndexOutOfBounds exception. If a null reference is
dereferenced, Java throws a NullPointerException. Such exceptions can terminate
the program abruptly. You usually see a stack trace in the terminal in that case.
But it’s possible for programmers include code that catches the exceptions and
continues with the program execution.

Lower-level, unsafe languages like C do not perform these safety-checks.
Programs may crash uncontrollably (often with very little information on what
went wrong) or, worse, they may have arbitrary effects and produce arbitrary
results, often without anyone noticing the problem (until a plane crashes or
rocket explodes).

For example, in C you can easily access an array element that does not exist (e.g.,
element at index 1000 in an array of length 3). The code generated by a C compiler
will simply add 1000 to the start address of the array and read (or write!) whatever
is at the resulting memory location. This kind of “buffer overflow” is a key cause of
security bugs in today’s software!

Avoiding Runtime Exceptions
Java’s type system prevents the above kinds of problems. However, getting an
exception at runtime in Java still can be painful. Especially if that leads to a
production system going down. Thus, it is best to completely avoid problems by
using approaches like the Option type we discussed. This lets the compiler force
us to handle every possible problem (like you saw in labs 11 & 12).

For example, our binarySearch function returns an Option<Integer>, so it can tell
us whether or not the value was found. If it was found it returns some(index),
otherwise it returns none(). We get the Option and all we can do with it is fold it.
fold requires arguments for both situations; so we can’t ignore the problem case!

Complete the code to produce "Found at index: …" or "Not found."
binarySearch(friends, "Voldemort").fold(

 Composition in Java Workbook 14

 Page 10 of 10 LuCE Lugano Computing Education

Research Lab

Java Streams
A significant fraction of this course centered around the Sequence interface, and
how to use map, filter, and reduce, to conveniently process sequences. We
included this material for two reasons: (1) it connects to PF1’s use of lists
(sequences are equivalent to BSL lists), and (2) it connects to Java’s more
advanced Streams API (map, filter, and reduce on sequences is equivalent to—but
simpler and cleaner than—the same operations on Java streams).

The Java API contains an entire package (java.util.stream) with classes that are
similar to sequences. Those classes are called streams. The main way to process
the elements in a stream are map, filter, and reduce.
Creation
The Java API provides various ways to create streams. Unlike with sequences,
however, you don’t create streams with cons or of. You can, however, create
streams from an existing collection, like a List:

public static Stream<String> toStream(List<String> strings) {
 return strings.stream();
}
Mapping
Let’s map strings to integers by parsing them:

public static Sequence<Integer> mapDemo(Sequence<String> strings) {
 return map(Integer::parseInt, strings);
}

public static Stream<Integer> mapDemo(Stream<String> strings) {
 return strings.map(Integer::parseInt);
}
Filtering
Let’s keep only the non-empty strings:

public static Sequence<String> filterDemo(Sequence<String> strings) {
 return filter(s -> !s.isEmpty(), strings);
}

public static Stream<String> filterDemo(Stream<String> strings) {
 return strings.filter(s -> !s.isEmpty());
}
Reduction
Let’s concatenate all the strings:

public static String reduceDemo(Sequence<String> strings) {
 return reduce("", String::concat, strings);
}

public static String reduceDemo(Stream<String> strings) {
 return strings.reduce("", String::concat);
}

Now that you master sequences you are ready to discover Java’s streams and all
the concurrency and performance goodies they provide!

