
TIDE: An Educational Live Programming Environment
to Compose Graphics with PyTamaro

Joey Bevilacqua
joey.bevilacqua@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Nathan Coquerel
nathan.coquerel@ens-rennes.fr

Rennes University
Rennes, France

Luca Chiodini
luca.chiodini@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Igor Moreno Santos
igor.moreno.santos@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Matthias Hauswirth
matthias.hauswirth@usi.ch

Software Institute, Università della
Svizzera italiana

Lugano, Switzerland

Abstract
The PyTamaro approach to introductory programming equates
composing a program to composing a graphic. Using the sim-
ple PyTamaro library for Python, beginner programmers
compose function calls that produce primitive graphics, such
as rectangle(20, 10, red), with function calls that com-
bine graphics into composites, such as above(_, _).

To ease students into programming, several school teach-
ers have been using TamaroCards, a paper-based visual
language that can express the subset of Python needed to
compose simple graphics with PyTamaro.
This paper introduces TIDE, the TamaroCards IDE, a

web-based environment to complement the unplugged, paper-
based TamaroCards. Given the constraints imposed by the
Python programming language, the PyTamaro library, and
the TamaroCards notation, the paper explores the design
space for an interactive TamaroCards programming envi-
ronment, describes a design that satisfies the pedagogical
needs, and evaluates the implemented design using the Cog-
nitive Dimensions framework.

CCS Concepts: • Social and professional topics → Com-
puter science education.

Keywords: Novice Programmer, Visual Programming, No-
tional Machine, Graphics Programming, Live Programming,
Composition, Expressions, Error Reporting, Evaluation
ACM Reference Format:
Joey Bevilacqua, Nathan Coquerel, Luca Chiodini, Igor Moreno
Santos, and Matthias Hauswirth. 2025. TIDE: An Educational Live
Programming Environment to Compose Graphics with PyTamaro.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PAINT ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2160-1/25/10
https://doi.org/10.1145/3759534.3762683

In Proceedings of the 4th ACM SIGPLAN International Workshop
on Programming Abstractions and Interactive Notations, Tools, and
Environments (PAINT ’25), October 12–18, 2025, Singapore, Singapore.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3759534.
3762683

1 Introduction
PyTamaro [9] is an educational graphics library for Python.
Aimed at beginner programmers, it only requires a minimal
set of Python language constructs (literals, constant uses, and
function calls) to create primitive graphics and to compose
them. Because PyTamaro uses pure functions and immutable
graphic values, there is a direct correspondence between the
composition of function calls and the composition of graphics.
This supports students in reasoning about the structure of
code, and it helps them in learning to trace program exe-
cution [10]. This correspondence also supports students in
learning to abstract, by identifying identical or similar com-
ponents of graphics (clones), and by defining constants and
functions to represent them. The library, together with an
associated web site1 that provides example programming ex-
ercises, has been used for more than three years in multiple
Swiss high school informatics courses to teach programming
in Python and has been trialed in a year-long introductory
programming course in middle school.
TamaroCards (TC)2 is a visual data-flow language for

representing simple PyTamaro programs. It was developed
to support teachers in the initial lessons of their PyTamaro-
based programming courses. The language primarily consists
of paper cards representing function calls, constant uses, and
literals. Students place those cards on tables and connect
themwith hand-drawn lines to form complete expressions, as
shown in Figure 1. Teachers who adopted TC in their courses
generally find the cards helpful. However, some teachers

1https://pytamaro.si.usi.ch/
2https://pytamaro.si.usi.ch/tamarocards

32

https://orcid.org/0009-0009-3127-0859
https://orcid.org/0009-0006-7556-6748
https://orcid.org/0000-0002-2712-9248
https://orcid.org/0000-0002-7844-2058
https://orcid.org/0000-0001-5527-5931
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759534.3762683
https://doi.org/10.1145/3759534.3762683
https://doi.org/10.1145/3759534.3762683
https://pytamaro.si.usi.ch/
https://pytamaro.si.usi.ch/tamarocards

PAINT ’25, October 12–18, 2025, Singapore, Singapore Bevilacqua et al.

Figure 1. Use of paper TamaroCards to compose a heart.
Cards are connected by drawing the links on the background
paper. The evaluation of the program can be traced by draw-
ing the graphics produced by each function call.

report that working with paper instead of a computer is
perceived as unauthentic by some of their students.

In this paper we present the TamaroCards IDE (TIDE), a
web-based environment for composing and evaluating TC
programs3. TIDE enables teachers to start their programming
course on the computer, while still enjoying the pedagogical
benefits of the TamaroCards. We discuss the design of the
environment, which is constrained by the existing TC nota-
tion, the PyTamaro library, the underlying general-purpose
programming language, Python, and the pedagogical needs
and priorities. We demonstrate the feasibility of our idea
through a prototypical implementation and use the Cogni-
tive Dimensions [14] framework to evaluate TIDE.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work, Section 3 provides the back-
ground on the TC language, Section 4 presents the design
space for a TC editing environment, Section 5 describes and
motivates TIDE as a specific point in that design space, Sec-
tion 6 evaluates TIDE using the Cognitive Dimensions frame-
work, Section 7 discusses limitations and future work, and
Section 8 concludes.

2 Related Work
TamaroCards (TC) is a small visual language centered around
pure functions and immutable data. It primarily focuses on
the composition of expressions, a prevalent construct of pro-
gramming languages that is often neglected in programming
education [7].

3A deployed version of TIDE is available at https://pytamaro.si.usi.ch/tide

TC supports Babylonian programming [24], a form of pro-
gramming that tightly integrates values and code. Babylo-
nian programming has been proposed as a promising ap-
proach to programming education [16]. TC was deliberately
designed to allow tracing the evaluation of expressions by
drawing intermediate values (mostly graphics) produced by
each sub-expression. This juxtaposition of values and code
can reduce the split attention effect [5].
TC can be seen as a notional machine, a “pedagogic device

to assist the understanding of some aspect of programs or
programming” [11]. Specifically, it is a form of the “expres-
sion as tree” notional machine4 that has been used to teach
and assess students’ conceptual understanding of expres-
sions and helps to shed light on their structure, typing, and
evaluation [1].
The purely functional nature of beginner PyTamaro pro-

grams, characterized by the absence of control-flow and mu-
table state, favors the use of a data-flow language [15]. This
contrasts with common educational visual programming lan-
guages like Scratch [25], that are based on a block paradigm
that focuses on imperative structured programming.

Visual data-flow programming systems can be traced back
to Sutherland’s work on “graphical specifications of com-
puter procedures” [27]. Nowadays, visual data-flow languages
are used in a wide range of domains: scientific visualizations
and simulations (e.g., Iris Explorer and Simulink, respec-
tively), systems design (e.g., LabVIEW), image and video
editing (e.g., Graphite and DaVinci Resolve Fusion, respec-
tively), game development (e.g., Unity Visual Scripting / Bolt),
and for education (e.g., teaching embedded systems program-
ming [3]).
The paper-based TC can be seen as a manual, physical

form of live programming. Live programming systems sup-
port “responsive and continuous feedback about how [a
developer’s] edits affect program execution” [18], which
reduces the friction between the writing of the code and
its execution, encouraging experimentation [4]. Tanimoto
identifies six different levels of “liveness”, that may be used
to classify systems that support live programming [28]. Of
course, with the paper-based TC there is no automatic eval-
uation, but the programming process can still interleave the
manual placement and connection of cards with the manual
evaluation of sub-expressions. The goal of TIDE is to auto-
mate the evaluation part and to provide feedback even when
programs contain errors.
When programming with the paper-based TC, students

are free to compose expressions in any order they want. They
may build expressions bottom-up, starting with literals and
constant uses. Alternatively, they may work top-down, start-
ing with the top-level node of an expression. The bottom-up

4https://notionalmachines.github.io/nms/ExpressionAsTree-1.html

33

https://pytamaro.si.usi.ch/tide
https://sites.cc.gatech.edu/scivis/iris/doc/ug/contents.htm
https://www.mathworks.com/products/simulink.html
https://www.ni.com/labview
https://graphite.rs
https://www.blackmagicdesign.com/products/davinciresolve/fusion
https://unity.com/features/unity-visual-scripting
https://notionalmachines.github.io/nms/ExpressionAsTree-1.html

TIDE: An Educational Live Programming Environment to Compose Graphics with PyTamaro PAINT ’25, October 12–18, 2025, Singapore, Singapore

Figure 2. Four kinds of expression cards in a TC program

242

163

206

80

100

80

100

pink = rgb_color(242, 163, 206) def lamp(color):
return overlay(ellipse(80, 80, color),

 rectangle(100, 100, black))

Constant Definition Function Definition

=pink

rgb_color
rgb_farbe
colore_rgb

def lamp

color

rectangle
rechteck
rettangolo

ellipse
ellipse
ellisse

overlay
ueberlagere
sovrapponi

black
schwarz
nero

Figure 3. Two kinds of definitions in a TC program

approach leads to the existence of multiple top-level expres-
sions during the construction process. The top-down ap-
proach leads to an expression with holes, an idea that has
been studied in live programming systems like Hazel [21].

3 Background: The Visual Language
TamaroCards (TC) represents the small subset of Python
needed in beginner PyTamaro programs. It is a language of
expressions consisting of literals, constant uses, function calls,
and operators (Figure 2). It also supports the definition of
constants and functions (Figure 3). The language represents a
pure and immutable subset of Python, without mutable state
and control flow. TC’s node-link diagram notation highlights
the data-flow through expressions. Data flows from left to
right: function and operator nodes have an outlet port on
their right, and inlet ports (parameters) on their left.
TC was designed as a “tangible” language: students create

programs by placing paper cards (printed and cut by teach-
ers) on a large sheet of paper and by drawing lines from
outlets to inlets to compose expressions. Literal cards are
empty pieces of paper onto which students write the literal
by hand. Students can use constant and function definition
cards (“pink =” and “def lamp” in Figure 3) to define their
own constants and functions.
More information about the language is also provided

later in Section 5 when relevant to the discussion of design
decisions influenced by properties that the IDE inherits from
the TC visual programming language.

Documentation Cards Code Cards

cyan
cyan
ciano

circular_sector
kreis_sektor

settore_circolare

cyan
cyan
ciano

circular_sector
kreis_sektor

settore_circolare

100

90

Figure 4. Documentation cards include illustrative annota-
tions for parameters and return values. Code cards do not
include those annotations to avoid conflicts with manually
drawn evaluation results.

3.1 Code Cards vs. Documentation Cards
Each TC card comes in two variants: the code card and the
documentation card (Figure 4). Code cards are the cards stu-
dents use to compose expressions. Documentation cards rep-
resent the “library documentation”. They include visual an-
notations on each inlet (parameter) and outlet to illustrate
the semantics of the card. Each annotation represents an
example value (e.g., a color, a width, a graphic), so that the
set of annotations provide an illustrative usage example of
the card. An annotated card is a form of purely visual docu-
mentation: it helps students to determine the meaning of a
card simply by looking at the visual annotations. Code cards
elide these annotations, which leaves space for students to
trace the evaluation of an expression by drawing evaluation
results on the right side of cards (“Code Cards” in Figure 4).

3.2 Classroom Use
The TC language was developed for a teacher training work-
shop on teaching Python programmingwith PyTamaro. Teach-
ers participating in the workshop subsequently started using
TC in their own classrooms. Figure 5 shows an exercise from
a middle school programming course5. Students solve such
exercises by placing paper cards on their table, connecting
themwith hand-drawn lines, and sometimes annotating each
card with the value it produces (Figure 1).

Because of their unplugged paper-based nature, students
and teachers can use TC in unintended ways. For example,
teachers may use documentation cards instead of code cards
to compose expressions, or students may just juxtapose cards
without drawing any links between ports.

3.3 From Physical to Virtual
TC are physical manipulatives that students can arrange on
a table. Fyfe and Nathan hypothesized that “a concreteness
fading progression that includes a physical manipulative
in the first stage will be more effective than one that does
not” [13]. TC can be seen as a first stage in a concreteness
fading progression, where the next stage is working with
(more abstract) Python code. Fyfe and Nathan’s hypothesis
could be specialized to mean that starting programming by
5https://luce.si.usi.ch/composing-python/

34

https://luce.si.usi.ch/composing-python/

PAINT ’25, October 12–18, 2025, Singapore, Singapore Bevilacqua et al.

Figure 5.Middle school exercise: Use the three cards from
the library to program the shown Pac-Man graphic.

using physical, paper-based TC would be more beneficial
than starting using virtual TC. However, a recent study by
Trory et al. found little effect of the modality on learning
gains or attitude [29]. Thus, using a virtual environment to
work with TC may offer interesting benefits without signifi-
cant drawbacks.

4 Design Space for an Environment
There are two key facets to designing a visual programming
environment: the design of the visual language, and the de-
sign of the interactive environment. Given that the language
(TC) already exists in a paper-based form, and has been used
in educational practice in schools, we are constrained by the
existing language and focus our work on the design of the
environment. Even though TC is a small visual language,
based on a straightforward node-link diagram notation, a
designer of an interactive environment faces a multitude of
design questions. In this section we present those questions
to outline the design space.
Node creation How does the user specify the kind of node
to create? Is there a palette of available nodes from which
to drag and drop? If a large number of nodes is provided,
how can the user find the right node quickly? How are literal
nodes (e.g., numeric or string literal) created?
Connection Howdoes the user specify links between nodes?
Do links have to be created in the direction of data-flow, from
an outlet to an inlet?
Layout Is the user responsible for laying out the nodes or is
the layout done automatically? Is the membership of a node
in a constant/function definition determined by its place-
ment (within the area of the definition) or by its connectivity
(within the subgraph corresponding to the definition)?
Selection Does the editor allow selecting a node, a link, a
subgraph? What further actions are enabled by providing
selection?
Copying Does the editor allow copy-pasting a node, a link,
a subgraph?

Deletion Does the editor allow the deletion of an individual
node, an individual link, a selected subgraph?
Edit History Are undo and redo operations allowed?
Abstraction The TC language supports two forms of ab-
straction: user-defined constants and functions. How does
the user create a new abstraction? Does the editor provide
support for abstracting by refactoring (e.g., an “extract con-
stant” refactoring, similar to Figure 6 of [19])? Can a program
contain subgraphs that are not within any definition (top-
level expressions)? Does the editor provide a separate canvas
for each constant/function definition or are they all shown on
a single canvas? Can function/constant definitions contain
other function/constant definitions?
Well-formedness checking or enforcement (Problems
that have no direct correspondence in Python.) Does the
editor allow diagrams that are not well-formed, or does it
prevent them? Can one connect two outlets or two inlets?
Are cycles allowed? Can an inlet have multiple incoming
links? Can an outlet have multiple outgoing links (sharing of
sub-expressions)? If well-formedness violations are allowed,
what feedback does the editor provide?
Syntax checking or enforcement (Problems that can be
related to a SyntaxError in Python.) Does the editor allow
syntactically incorrect programs? Can an inlet have no in-
coming link (can an expression have holes [22])? If syntax
violations are allowed, what feedback does the editor pro-
vide?
Name analysis or enforcement (Problems that can be re-
lated to a NameError in Python.) Does the editor allow the
use of constants or functions that have not been defined?
Does the editor allow the definition of constants or functions
with names that are not legal Python identifiers? Does the
editor allow multiple definitions of the same name? Does
the editor consider that constant names and function names
share the same name space? Does the editor allow renam-
ing? Does the editor provide support for navigating between
definition and uses of a name? Can name definitions con-
tain cyclical dependencies? If name binding violations are
allowed, what feedback does the editor provide?
Type checking or enforcement (Problems that can be re-
lated to a TypeError in Python.) Does the editor allow pro-
grams with type errors? How should the type system used
by the editor relate to the type system of Python? If type
errors are allowed, what feedback does the editor provide?
Literal checking or enforcement (Problems correspond-
ing to lexical errors with respect to literal tokens.) The TC
language supports different types of literal nodes (e.g., floats
and strings). Is there a separate kind of literal node for each
type? How does the user input the value of a literal node?
Does the user specify the type of the literal or does the editor
automatically determine it based on the user input? Does
the editor allow illegal literals (e.g., literals that would not be
valid lexical tokens in Python)? If illegal literals are allowed,
what feedback does the editor provide?

35

TIDE: An Educational Live Programming Environment to Compose Graphics with PyTamaro PAINT ’25, October 12–18, 2025, Singapore, Singapore

Program Evaluation Does the editor automatically evalu-
ate the TC expressions and annotate nodes with their values?
Where and when are values shown? Does the editor show
values of all types? How are values of different types visual-
ized? How do errors (due to well-formedness, syntax, name,
type, or evaluation errors in preceding nodes) affect evalua-
tion, and what kind of feedback does the editor provide?
Annotation Does the editor support annotations? Does it
allow annotations of individual nodes, links, subgraphs, and
free-standing annotations at arbitrary locations? How are
annotations created? Do annotations of nodes, links, or sub-
graphs move when the nodes, links, or subgraphs move?

5 Design
We now describe the design of TIDE, which represents a spe-
cific point in the design space defined in Section 4. Moody
states that design rationale is conspicuously absent in the
design of visual notations in software engineering [20]. We
address this issue by providing a rationale for our design
decisions, based on the existing visual language (TC), the un-
derlying programming language (Python), the library (PyTa-
maro), and the educational goals. These goals include teach-
ing a purely functional approach to programming, where
pieces of programs are independent and thus can easily be
composed. Moreover, they include teaching the benefits of
static typing [23], despite the underlying language, Python,
not being statically typed.

5.1 Node Management
Node Creation TIDE provides a palette from which the
user drags nodes onto the canvas (left side of Figure 6). The
palette shows documentation cards (with their explanatory
annotations), while the canvas shows code cards. The set
of nodes to be shown in the palette can be configured. To
quickly find a node, a search field allows for incremental
search by name. The palette also includes nodes for literals,
which are pre-populated with common default values (one
for type float, one for str, and two for the two bool values).
Connection Users have to explicitly establish connections
between ports by dragging from one port to the other. The
direction in which the connection is established does not
matter, because we believe that the educational benefit of stu-
dents having to drag connections in the direction of data-flow
is dwarfed by the user dissatisfaction when unsuccessfully
trying to establish a connection in the opposite direction, an
interaction that is commonly possible in node-link diagram
editors. The tips of the arrows always point towards the
right, clearly indicating the direction in which data flows as
the expression is evaluated. In the middle of Figure 6, vari-
ous cards are connected together to compose a graphic of a
stylized house.
Layout In TIDE, users freely arrange nodes. Automatic lay-
out of nodes is not supported: early feedback from teachers

indicated that there is value in having students think about
properly placing nodes on the canvas. Cards used in constant
definitions can be also arranged freely: the boundaries grow
dynamically to encompass the entire tree connected to the
terminal of the definition, as seen for the definition of the
arm constant in Figure 7.
Selection Users can select a single node or link by clicking
on it (e.g., the rectangle node of Figure 6 is shown “raised”
to indicate that it is currently selected), and they can se-
lect a subgraph by rubber-banding. Selected pieces can be
freely moved around on the diagram. Besides its purpose for
diagram manipulation, selection can also have a pedagogi-
cal benefit. During a live-coding session, an instructor may
select a group of components to highlight them during an
explanation.
Copy & Paste TIDE allows users to create a copy of the se-
lected nodes and links. This is beneficial for creating graphics
that consist of multiple similar components, or to create al-
ternative variants of a program that are juxtaposed on the
same canvas. We are acutely aware that copying a part of a
(graphical or textual) programmeans introducing code clones.
We plan to explore ways to exploit this action to suggest
refactorings to use language abstractions (such as extracting
common sub-expressions into constants or functions).
Deletion To support experimentation, we allow students to
delete individual links, nodes, and the selected subgraph.
Edit History TIDE supports undoing and redoing edits. This
addresses the problem of accidental deletion, especially in
the case a larger subgraph was selected. It also allows stu-
dents to explore alternatives, and to go back to a previous,
working solution. However, TIDE does not provide advanced
features, such as a list of prior edits, or the maintenance of
several alternative branches in the edit history. While these
might be beneficial in some cases, the additional complexity
of their user interface would distract from the essential task
of composing programs.

5.2 Abstraction
TIDE currently supports abstraction through constant defini-
tions, but does not yet support function definitions. The user
defines a constant by selecting a sub-expression and picking
“extract constant” from a sub-menu. All definitions, as well
as top-level expressions, co-exist on one canvas. Whether or
not a node is part of a constant definition is determined by
connectivity: if a node’s outlet is transitively connected to
the terminal of the constant definition, the node is considered
part of that definition, and the definition’s visual rectangle
automatically expands to surround that node. Definitions
cannot be nested; all definitions are top-level definitions
shown on the same canvas. Figure 7 illustrates the definition
of a constant (arm): the expression that produces the value
is connected to the terminal of the constant definition (blue
semicircle on its right). Then, the name can be used in a

36

PAINT ’25, October 12–18, 2025, Singapore, Singapore Bevilacqua et al.

Figure 6. The TamaroCards IDE. Left: palette from which the user can drag cards onto the canvas. Center: canvas with the
cards composing the expression above(triangle(200, 200, 60, red), rectangle(200, 200, black)) to draw a house.
Right: documentation for the selected card (the function rectangle).

Figure 7. The arms of the cross in the Swiss flags are ab-
stracted to the arm constant. The name is then used twice to
compose the flag.

bigger expression to compose a more complex graphic (e.g.,
the cross of the Swiss flag).

5.3 Well-Formedness Checking or Enforcement
TIDE prevents users from establishing connections thatwould
result in a diagram that is not well-formed. Students have
been shown to make well-formedness mistakes in expression
tree diagrams, such as creating cycles, building incomplete
trees, and connecting multiple sibling expressions to the
same inlet [1]. However, we decided to prevent these kinds

of mistakes to focus the students’ learning on problems that
can also occur in Python.

Awell-formed TC programmust correspond to a set of top-
level expressions with possible holes and a set of constant
definitions. Any link must connect one outlet to one inlet
(or to the terminal of a constant definition). It is illegal to
connect multiple outlets to an inlet. While connecting one
outlet to multiple inlets would be a practical way to avoid
code duplication within the language of the diagram, TIDE
disallows this because there is no corresponding construct
in Python. It is important for students to learn to avoid code
duplication [6], but we want them to learn to use the facilities
of Python (e.g., constants) to do so.
A well-formed expression must not be cyclic. TIDE en-

sures that expressions are acyclic by preventing the creation
of links from an outlet to an inlet of the same node or its
predecessors.
A well-formed TC program does not necessarily need to

be complete. We do not classify an open inlet or terminal
as a well-formedness mistake, but we treat them as holes
and report them as syntax errors (see Section 5.4). Moreover,
we allow open outlets without generating any error: they
correspond to top-level expressions in the program. Allowing
holes enables users to construct expressions top-down, and
allowing open outlets enables them to construct expressions
bottom-up.

5.4 Syntax Checking or Enforcement
TIDE allows users to create well-formed but syntactically in-
correct programs. Unlike the well-formedness errors, which
TIDE disallows, syntax errors can happen in TC as well as in
Python. Thus, students making syntax errors in TC will be
able to transfer their familiarity with these kinds of problems

37

TIDE: An Educational Live Programming Environment to Compose Graphics with PyTamaro PAINT ’25, October 12–18, 2025, Singapore, Singapore

Figure 8. Example of a SyntaxError: one of the arguments
of the text function is missing. The first inlet shows an
ellipsis (...). Hovering over the ellipsis shows an error that
indicates a missing argument for the content parameter.

to their future work in Python. TIDE reports several kinds
of syntax errors:
Holes in Expressions The presence of a hole (a missing
argument for a parameter, e.g., in overlay(■, arm)) is con-
sidered a syntax error. Our evaluation strategy, upon finding
expression holes, prevents the evaluation of the expression.
According to Omar et al., this is the standard approach for
programming languages [22]. TIDE highlights holes with an
ellipsis to show the missing sub-expression, a yellow high-
light of the corresponding inlet, and a tooltip with the error
message (Figure 8). The text in the tooltip deliberately uses
wording similar to the error messages Python provides (e.g.,
the term “Syntax Error”), to familiarize students with the
error messages they will be confronted with in Python. The
ellipsis (...) was chosen because the Python language in-
cludes an ellipsis that sometimes is used to denote a hole
in expressions (most teachers developing assignments for
PyTamaro follow this convention). The color of the tooltip
and the error highlight (yellow) was chosen to be easily dis-
tinguishable from the fill colors of TC nodes (light red, green,
and blue).
Allowing this kind of mistake enables students to construct
expressions in a top-down manner, starting with a top-level
function call, and incrementally building sub-expressions
for each argument. Without the ability to have incomplete
expressions with holes, TIDEwould prevent such a top-down
problem decomposition approach.
Holes in Constant Definitions A hole can similarly ap-
pear when a constant is defined without an initialization
expression. This is equivalent to a Python assignment state-
ment without an expression (e.g., arm = ■). TIDE shows a
syntax error if no nodes are connected to the terminal of the
constant definition.
Invalid Names The definition or use of invalid names (e.g.,
answer? = 42) is also reported as a syntax error. TIDE checks
that constant names follow the convention for valid Python
identifiers.

Python source code can have many other kinds of syntax
errors as well, such as missing or superfluous parentheses,
but the TC language (similar to a block-based language)
makes such mistakes impossible by construction.

5.5 Name Analysis or Enforcement
TIDE supports the definition of constants. In a constant def-
inition, the name is shown in the “roof”, to the left to the
equals sign (Figure 7). In a constant use, the name is the sole
content of the node.
When declaring a new constant, the user is asked to pro-

vide its name. The use of illegal identifiers is reported as an
error. Specifically, the editor marks the usage of names that
have already been defined (e.g., red) and Python keywords6
(e.g., return) as name and syntax errors, respectively. The
user can rename the constant by clicking on the name in
the constant definition or the constant use. TIDE deliber-
ately does not provide a rename refactoring: this teaches
students that names are what ties uses and definitions to-
gether, and thus that when they rename a definition, they
need to appropriately rename all the uses as well.

However, if the user opens a context menu on a constant,
it is possible to navigate to the constant definition.
Cyclic dependencies are reported as a “Name Error” by

TIDE. The definition of a constant a cannot depend on an-
other constant b if the definition of b itself depends on a.
This would normally not be possible in Python, because
statements are ordered and executed sequentially, while the
TC visual language does not have the concept of an order.
Figure 9 shows how TIDE reports such an error.
In Python, a NameError is “raised when a local or global

[unqualified] name is not found”7. TIDE reports a “Name
Error” if it cannot find a constant definition for a name used
in a constant use. Similarly, it signals a “Name Error” if
multiple constant definitions define the same name. This
is necessary because, unlike the full Python language, our
sub-language only allows the definition of names once (no
multiple definitions or assignments).

5.6 Type Checking or Enforcement
The type system of TC as implemented in TIDE is entirely
monomorphic and only supports a predetermined set of
types: Python’s float, str and bool, plus Graphic, Color,
and Point from the PyTamaro library.
Following the pedagogical idea that students learn from

making mistakes, and that mistakes in TIDE are easier to
understand than mistakes made in Python, TIDE allows pro-
grams with type errors.
According to the Python specification, a TypeError is

“raised when an operation or function is applied to an object

6The Python Language Reference » 2. Lexical analysis » 2.3. Identifiers and
keywords
7The Python Standard Library » Built-in Exceptions » NameError

38

https://pytamaro.si.usi.ch/documentation/pytamaro/Graphic
https://pytamaro.si.usi.ch/documentation/pytamaro/Color
https://pytamaro.si.usi.ch/documentation/pytamaro/Point
https://docs.python.org/3/reference/lexical_analysis.html#keywords
https://docs.python.org/3/reference/lexical_analysis.html#keywords
https://docs.python.org/3/library/exceptions.html#NameError

PAINT ’25, October 12–18, 2025, Singapore, Singapore Bevilacqua et al.

Figure 9. Example of a NameError: a cyclic dependency.
Variable a depends on b, which depends on c, which in turn
depends on a. This error is shown on all nodes. Hovering over
one shows a popup that highlights the chain of dependencies.

Figure 10. The type of the first argument of ellipse is
incorrect, resulting in a TypeError. The ellipse node is
highlighted with a thick yellow border. Hovering over the
inlet of the function shows a popup that describes the error
referring to the mismatching types. As a consequence of this
error, the card for the overlay function cannot be evaluated
and is shown with a thinner yellow border.

of inappropriate type” and when “passing arguments of the
wrong type (e.g. passing a list when an int is expected)”8.

TIDE checks that the types at both ends of a link (the
outlet of a literal, constant, or function, and the inlet of a
function) agree, and it reports type errors for every disagree-
ment. Links with type mismatches are highlighted in yellow.
The error tooltip shown next to the inlet reports both the
actual type at the outlet and the expected type at the inlet
(Figure 10).

5.7 Literal Checking or Enforcement
The TC language contains literals for the supported Python
types (Section 5.6). The paper-based literal card is simply
an empty white card, on which a student can freely write.

8The Python Standard Library » Built-in Exceptions » TypeError

Similarly, the literal nodes of TIDE allow users to enter arbi-
trary text. TIDE checks the text to automatically determine
the type of the literal value. If the type of a literal cannot be
determined (e.g., for "hi), a “Syntax Error” is shown.

While this could be prevented by providing a more restric-
tive user interface (e.g., a node with pre-written quotation
marks around the text, a slider to choose a number, and a
checkbox for a Boolean literal respectively), we deliberately
allow users to make the same kinds of mistakes they might
make when writing Python source code.

5.8 Program Evaluation
TIDE is a live programming environment. It automatically
analyzes and evaluates the program after each change, and
shows the corresponding values and errors, as seen in Fig-
ure 6. The main purpose of the PyTamaro library is to allow
students to work with values that are algebraic graphics
(a few primitive graphics and ways to compose them). By
looking at a value of type Graphic (e.g., a house), students
immediately see its structure (e.g., a roof placed above a wall),
which often quite closely corresponds to the structure of the
expression that produced it. Graphics are shown above the
outlet of function calls that produce them, helping students
understand how the expression is composed.

Graphics can have an arbitrary size. TIDE shows all graph-
ics at the same scale, so that component graphics have the
same size when shown in isolation and when shown as part
of a bigger graphic.
Currently, TIDE only shows values of types Graphic (by

showing the graphic itself) and Color (by showing a colored
paintbrush icon). Although it would be possible to show
other types of values, additional annotations would clutter
the diagram and thus reduce the emphasis on the composi-
tion of graphics.

As a live programming environment, TIDE keeps all values
up-to-date when the user edits the program. To avoid jarring
effects when entering literal values, which are often used to
define sizes, the update of values is debounced.

Violating a function’s precondition leads to an evaluation
error, and thus the resulting graphic is not shown. TIDE does
not currently report runtime errors, so it does not show any
error annotation for a function precondition violation.

An important feature of TIDE is that programs containing
errors of any kind (syntax, name, or type errors) are still
partially evaluated. An error only prevents the evaluation
of the parts of an expression that depend on the erroneous
nodes (Figure 10 shows an example).
In the context of the framework proposed by Tanimoto,

used to classify the “liveness” of a programming environ-
ment [28], TIDE sits on the fourth level (Informative, signifi-
cant, responsive and live).

39

https://docs.python.org/3/library/exceptions.html#TypeError

TIDE: An Educational Live Programming Environment to Compose Graphics with PyTamaro PAINT ’25, October 12–18, 2025, Singapore, Singapore

5.9 Annotations
TIDE uses annotations for various purposes. It annotates
function nodes that produce graphics or colors with the value
they produce. If nodes cannot be evaluated, they are instead
highlighted as an error and annotated with tooltips that
are shown when selecting or hovering over the node itself.
Unlike the canvas, which shows code cards, the palette shows
documentation cards with their additional annotations that
help illustrate the purpose of each parameter and include
exemplar values [24]. In case of type errors, the links are
annotated with the mismatching types.

TIDE does not support user-defined annotations. The ab-
sence of such a feature forces students to use a clean layout
to communicate clearly, and to introduce proper abstractions
(named constants) with good names, a skill that will transfer
to writing code in Python later on.

6 Evaluation
Weevaluate TIDE using the Cognitive Dimensions [14] frame-
work. While we focus on evaluating the interactive environ-
ment, the evaluation necessarily is affected by the existing
visual TC language, the PyTamaro library, and the underly-
ing Python language. The Cognitive Dimensions framework
consists of 13 dimensions. For each dimension, we begin the
discussion by citing its short description [14, Section 3].

6.1 Abstraction Gradient
What are the minimum and maximum levels of abstrac-
tion? Can fragments be encapsulated?

The declaration of constant names to allow the re-use of val-
ues is the only supported form of abstraction in TIDE. Using
constants is not strictly necessary, because all expressions in
TC are pure and thus names can always be substituted with
the expression they stand for. This puts TIDE in what Green
and Petre define as the abstraction-tolerant group. Providing
the ability to move along the abstraction gradient (from a sin-
gle deeply-nested expression devoid of named constants to a
program providing named constants for meaningful subex-
pressions) is essential for an environment where students
are supposed to learn to abstract.

6.2 Closeness of Mapping
What ‘programming games’ need to be learned?

The only programming constructs used by TCs are functions,
constants and literals. All TC functions are pure: there are
no side effects. One can reason about a TC function as a
mathematical function: it consumes some values to produce
another value. The “programming world” (functions) of the
TC language is close to its “program world” (graphics). A
function either produces a primitive graphic or composes
two graphics together. The composition operations between
graphics can be easily reasoned about even without consid-
ering the semantics of a programming language.

6.3 Consistency
When some of the language has been learned, how much
of the rest can be inferred?

The very limited number of constructs available in the TC
visual language makes it easy for someone to learn the build-
ing blocks of the language and compose new programs. One
only needs to learn how to apply functions by connecting
cards together, assuming the types match. TIDE uses Judi-
cious [8] to provide the documentation for each card that
represents a function, including a brief description of what
the function does, names and types for each parameter, the
return type of the function, and simple examples with the
corresponding outputs.

TIDE uses a consistent way to report errors, using the
same yellow color for highlighting cards and links, and for
presenting tooltips with error messages. Moreover, it uses
the same error names (syntax, name, and type error) students
will encounter once they move to Python.

6.4 Diffuseness
How many symbols or graphic entities are required to
express a meaning?

The number of symbols required to express a computation
using TCs in TIDE is consistently less of that of Python. A
number of tokens, such as parentheses (required to express
precedence) and commas (used to separate arguments), are
no longer required due to the visual nature of the TC lan-
guage.

6.5 Error-Proneness
Does the design of the notation induce ‘careless mistakes’?

TIDE prevents well-formedness mistakes (Section 5.3) that
would only exist in the visual environment and have no cor-
respondence in Python. It deliberately focuses the possible
mistakes to those that are pedagogically meaningful (Sec-
tions 5.4 to 5.6). Unlike Scratch, with its “failsoft” approach
that avoids all error messages [17], TIDE allows students to
make errors in a simple environment and provides targeted
feedback to help students learn from them.

6.6 Hard Mental Operations
Are there places where the user needs to resort to fingers or
pencilled annotations to keep track of what’s happening?

TIDE’s main benefit is its Babylonian approach to live pro-
gramming by interleaving code and values. This reduces the
otherwise hard mental operation of program tracing into
small, tractable steps.

When expressions are composed further and further, they
become large and hard to work with. TIDE provides a mech-
anism to deal with this problem: by giving names to specific
sub-expressions, a user can decompose expressions and then
use those names to compose simpler expressions.

40

PAINT ’25, October 12–18, 2025, Singapore, Singapore Bevilacqua et al.

This approach falls short in case of sub-expressions that
are similar but not identical. Handling this case requires al-
lowing abstraction using user-defined functions, a construct
that is not currently supported in TIDE.

6.7 Hidden Dependencies
Is every dependency overtly indicated in both directions?
Is the indication perceptual or only symbolic?

The TC language does not allow any form of impurity: all
functions are pure and names cannot be redefined. This
guarantees that all the dependencies within an expression
are clearly indicated by the arrows that connect the cards.
Cyclic dependencies within an expression are not allowed
(Section 5.5).

However, TIDE does currently not visualize the connec-
tion of name uses to their definitions (such as the “binding
arrows” shown by Dr. Racket and its predecessor Dr. Scheme,
as illustrated in Figure 7 of Findler et al. [12]). This makes it
harder to see the dependency structure of a program with
definitions.

6.8 Premature Commitment
Do programmers have to make decisions before they have
the information they need?

In TIDE, users can refactor sub-expressions into constants.
The order in which constants are created and placed on the
canvas is irrelevant. Moreover, the purity of the language al-
lows for sub-problems to be solved independently, a property
inherited from PyTamaro. This frees the users from having to
clearly define how to tackle the composition of a graphic at
the very beginning, encouraging exploration and refactoring
of complex expressions.

Moreover, TIDE’s undo history reduces the risk of editing,
and the ability to copy and paste entire subgraphs allows the
convenient exploration of alternatives.

6.9 Progressive Evaluation
Can a partially-complete program be executed to obtain
feedback on ‘How am I doing’?

TIDE shows the results of evaluating expressions and their
sub-expressions. When information is missing because the
expression is incomplete (e.g., a missing argument) or at
least one of the sub-expressions has in turn an error, an
expression cannot be fully evaluated. In such situations, the
program is partially evaluated: partial results are rendered for
complete sub-expressions, while localized error information
is given as a form of feedback to guide the user towards
a state where a program can be fully evaluated. TIDE also
highlights the links that propagate the error, helping students
to find the root cause quickly. The node that is the source
of the error is highlighted with a thick yellow border (e.g.,
the ellipse node in Figure 10). All nodes that can no longer
be evaluated as a consequence of errors in other nodes are

instead highlighted with a thinner yellow border (e.g., the
overlay node in Figure 10).
When showing a prototype of TIDE to a teacher who

extensively uses TC in their classroom, their immediate re-
sponse was that seeing the values, including the intermediate
ones, was great. Their second response was that a teacher
needs to be able to disable the live evaluation for pedagog-
ical reasons. Automatically evaluating the code deprives
students of a learning opportunity: they should learn to
“trace” through a program, i.e., to evaluate it by themselves
(a form of visual program simulation [26]). When students
work with the paper version of TC, one of the key activities
they do is tracing through the evaluation of the expression
by drawing the graphics produced by each card. If TIDE al-
ways immediately shows the evaluation results, there is a
risk that students stop reasoning about the code and resort to
a trial-and-error approach until the resulting graphic looks
as expected.

6.10 Role-Expressiveness
Can the reader see how each component of a program
relates to the whole?

Different language constructs have different visual notations.
Functions are represented in red, constants in blue, literals in
white (grayscale), and errors in yellow. The same blue is used
both in the definitions and uses of constants. A consistent
yellow is used to signal errors; the thickness of the yellow
border distinguishes between the node that is the source of
the error and the nodes that consequently error. Constant
use and literal cards have similar visual outlets, which are
different from the outlet of functions: functions need to be
called to be used, while literals and constants are used as-is.
The arrows in a function card clearly show the direction in
which data flows to see how the program works.

6.11 Secondary Notation
Can programmers use layout, color, other cues to convey
extra meaning, above and beyond the ‘official’ semantics
of the language?

TIDE does not offer means to annotate a TC program beyond
the live evaluation results and errors. However, users can
freely arrange cards on the canvas, and they can organize
code into named constants. This teaches students to pick
descriptive names to denote meaningful subexpressions, a
skill that will be valuable in Python.

6.12 Viscosity
How much effort is required to perform a single change?

TIDE has moderate viscosity: performing edits in a graph-
like structure may require rearranging the positions of the
nodes. Most of the time, local changes do not require much
rearranging, as expressions grow left to right. TIDE does
not offer features to automatically layout the nodes on the

41

TIDE: An Educational Live Programming Environment to Compose Graphics with PyTamaro PAINT ’25, October 12–18, 2025, Singapore, Singapore

canvas, but it allows to operate on multiple nodes at the
same time. This makes it easier to change the position of a
group of nodes. Users can select multiple nodes (and their
links) either individually or by selecting all nodes within
a certain rectangular area. Selected elements may then be
moved, copied or deleted. Moving a constant definition will
also move all the nodes that are part of the definition. Which
nodes are part of a constant definition is defined by (indi-
rect) connection to the terminal of the definition. Simply
connecting (or disconnecting) nodes will bring them inside
(or outside) of a constant definition group. It is also possible
to select a subtree or its root and refactor it into a constant
definition in one single action, similar to Figure 6 of [19].

6.13 Visibility
Is every part of the code simultaneously visible (assuming a
large enough display), or is it at least possible to juxtapose
any two parts side-by-side at will? If the code is dispersed,
is it at least possible to know in what order to read it?

It is possible to freely move and zoom across the canvas to
adjust the view of the program. The palette is shown as a
popup panel that can be opened on demand. The documen-
tation for a function represented by a card can be shown
by selecting it. Errors show up as tooltips near the relevant
cards and are also grouped in a collapsible list at the top-right
corner of the canvas. Clicking on an error in that list zooms
the canvas to the part of the diagram relevant for the error.
When a constant is user-defined, it is possible to jump from
a constant use to its definition through a context menu.
Juxtaposability is an important aspect of visibility. Tools

such as Code Bubbles [2] allow users to create bubbles con-
taining code fragments, which they can place on a canvas.
TIDE allows nodes to be freely placed; given that nodes need
to be connected by links, the layout of an expression is usu-
ally not too dissimilar from its tree structure. By moving
around sub-trees, users can place related sub-trees near each
other. More importantly, however, by extracting sub-trees
into constants, the constant definitions become disconnected
from their uses, and the definitions (similar to a code bub-
ble), can be freely placed where they are most helpful. This
extra freedom of placement afforded by creating constants
provides an additional motivation for students to practice
abstraction by creating constants. Moreover, the “bubble”
representing a constant shows the constant’s name in its
header, to reinforce the need for choosing good names.

7 Limitations and Future Work
The paper-based TC language includes user-defined func-
tions, but the current implementation of TIDE does not yet
support it. Function definitions are an essential abstraction
mechanism, and we plan to extend TIDE to support user-
defined functions.

In the current implementation of TIDE, all numbers are
treated as floating-point numbers rather than having multi-
ple numerical types. The only PyTamaro function that has
parameters annotated with type int is the rgb_color func-
tion, which expects three integer numbers (between 0 and
255) as the three color components, but its implementation
still works when provided with arguments of type float (the
numbers are rounded to the nearest int value). In the future,
we plan to extend our type system to add an integer num-
ber type. All functions that produce graphics in PyTamaro
always take floating-point values as numerical arguments.

TIDE does not display annotations for runtime errors such
as ValueErrors that would be produced, for example, when
providing a primitive graphic function with a negative size.
While the paper-based TC provides cards for Python op-

erators, TIDE still lacks the corresponding functionality.
The availability of TIDE provides the basis for empirical

evaluations that could provide insights into several open
questions: (1) Is a physical or a virtual implementation of a
visual language like TC more beneficial for learning? (2) In
which ways does automatic live evaluation help or hinder
learning? (3) Which affordances are most effective in teach-
ing for transfer from a visual language like TC to textual
code in a language like Python?

8 Conclusions
We described the design space for an educational visual pro-
gramming environment focused on the composition of graph-
ics that is supported by the PyTamaro library. Starting with
the paper-based visual TC language, and driven by the cor-
responding pedagogical goals, we characterized a promising
point in the design space, implemented it in the form of TIDE,
and evaluated it using the Cognitive Dimensions framework.
We plan to deploy TIDE to make it publicly available,

allowing teachers to adopt it in their classrooms as an alter-
native to paper-based TC. Based on a session using our initial
TIDE implementation, the teacher who originally encour-
aged the creation of an interactive environment to comple-
ment her use of paper-based cards, expressed her intention
to adopt TIDE in the upcoming school year. This real-world
adoptionwill provide the basis for future studies of the educa-
tional benefits of aspects such as live evaluation and support
for abstraction.

Acknowledgments
This work was partially funded by the Swiss National Science
Foundation project 200021_184689.

References
[1] Joey Bevilacqua, Luca Chiodini, Igor Moreno Santos, and Matthias

Hauswirth. 2024. Using Notional Machines to Automatically Assess
Students’ Comprehension of Their OwnCode. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 2. ACM,
PortlandORUSA, 1572–1573. https://doi.org/10.1145/3626253.3635524

42

https://doi.org/10.1145/3626253.3635524

PAINT ’25, October 12–18, 2025, Singapore, Singapore Bevilacqua et al.

[2] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri,
WilliamCheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola. 2010. Code Bubbles: A Working Set-Based
Interface for Code Understanding and Maintenance. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’10). Association for Computing Machinery, New York, NY, USA,
2503–2512. https://doi.org/10.1145/1753326.1753706

[3] Anke Brocker, René Schäfer, Christian Remy, Simon Voelker, and
Jan Borchers. 2023. Flowboard: How Seamless, Live, Flow-Based
Programming Impacts Learning to Code for Embedded Electron-
ics. ACM Trans. Comput.-Hum. Interact. 30, 1 (March 2023), 2:1–2:36.
https://doi.org/10.1145/3533015

[4] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean
McDirmid, Michal Moskal, Nikolai Tillmann, and Jun Kato. 2013. It’s
Alive! Continuous Feedback in UI Programming. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). Association for Computing Machinery,
New York, NY, USA, 95–104. https://doi.org/10.1145/2491956.2462170

[5] Paul Chandler and John Sweller. 1992. The Split-Attention Effect as
a Factor in the Design of Instruction. British Journal of Educational
Psychology 62, 2 (1992), 233–246. https://doi.org/10.1111/j.2044-8279.
1992.tb01017.x

[6] Luca Chiodini, Joey Bevilacqua, and Matthias Hauswirth. 2025. The
Toolbox of Functions: Teaching Code Reuse in Schools. In Proceedings
of the 6th European Conference on Software Engineering Education (EC-
SEE ’25). Association for Computing Machinery, New York, NY, USA,
185–189. https://doi.org/10.1145/3723010.3723029

[7] Luca Chiodini, Igor Moreno Santos, and Matthias Hauswirth. 2022. Ex-
pressions in Java: Essential, Prevalent, Neglected?. In Proceedings of the
2022 ACM SIGPLAN International Symposium on SPLASH-E (SPLASH-
E 2022). ACM, New York, NY, USA, 41–51. https://doi.org/10.1145/
3563767.3568131

[8] Luca Chiodini, Simone Piatti, and Matthias Hauswirth. 2024. Judi-
cious: API Documentation for Novices. In Proceedings of the 2024
ACM SIGPLAN International Symposium on SPLASH-E (SPLASH-E
2024). Association for Computing Machinery, New York, NY, USA,
1–9. https://doi.org/10.1145/3689493.3689987

[9] Luca Chiodini, Juha Sorva, and Matthias Hauswirth. 2023. Teach-
ing Programming with Graphics: Pitfalls and a Solution. In Proceed-
ings of the 2023 ACM SIGPLAN International Symposium on SPLASH-E
(SPLASH-E 2023). ACM, New York, NY, USA, 1–12. https://doi.org/10.
1145/3622780.3623644

[10] Luca Chiodini, Juha Sorva, Arto Hellas, Otto Seppälä, and Matthias
Hauswirth. 2025. Two Approaches for Programming Education in the
Domain of Graphics: An Experiment. The Art, Science, and Engineering
of Programming 10, 1 (Feb. 2025), 14:1–14:48. https://doi.org/10.22152/
programming-journal.org/2025/10/14

[11] Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Bene-
dict du Boulay, Matthias Hauswirth, Arto Hellas, Felienne Hermans,
Colleen Lewis, Andreas Mühling, Janice L. Pearce, and Andrew Pe-
tersen. 2020. Notional Machines in Computing Education: The Edu-
cation of Attention. In Proceedings of the Working Group Reports on
Innovation and Technology in Computer Science Education (ITiCSE-WGR
’20). Association for Computing Machinery, New York, NY, USA, 21–50.
https://doi.org/10.1145/3437800.3439202

[12] Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram Kr-
ishnamurthi, and Matthias Felleisen. 1997. DrScheme: A Pedagogic
Programming Environment for Scheme. In Programming Languages:
Implementations, Logics, and Programs, Gerhard Goos, Juris Hartmanis,
Jan Van Leeuwen, Hugh Glaser, Pieter Hartel, and Herbert Kuchen
(Eds.). Vol. 1292. Springer Berlin Heidelberg, Berlin, Heidelberg, 369–
388. https://doi.org/10.1007/BFb0033856

[13] Emily R. Fyfe and Mitchell J. Nathan. 2019. Making “Concreteness
Fading” More Concrete as a Theory of Instruction for Promoting

Transfer. Educational Review 71, 4 (July 2019), 403–422. https://doi.
org/10.1080/00131911.2018.1424116

[14] T. R. G. Green and M. Petre. 1996. Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’ Framework.
Journal of Visual Languages & Computing 7, 2 (June 1996), 131–174.
https://doi.org/10.1006/jvlc.1996.0009

[15] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004.
Advances in Dataflow Programming Languages. ACM Comput. Surv.
36, 1 (March 2004), 1–34. https://doi.org/10.1145/1013208.1013209

[16] Eva Krebs, Toni Mattis, Patrick Rein, and Robert Hirschfeld. 2023. To-
ward Studying Example-Based Live Programming in CS/SE Education.
In Proceedings of the 2nd ACM SIGPLAN International Workshop on
Programming Abstractions and Interactive Notations, Tools, and Envi-
ronments (PAINT 2023). Association for Computing Machinery, New
York, NY, USA, 17–24. https://doi.org/10.1145/3623504.3623568

[17] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. 2010. The Scratch Programming Language and
Environment. ACM Transactions on Computing Education 10, 4 (Nov.
2010), 1–15. https://doi.org/10.1145/1868358.1868363

[18] Sean McDirmid. 2007. Living It up with a Live Programming Language.
SIGPLAN Not. 42, 10 (Oct. 2007), 623–638. https://doi.org/10.1145/
1297105.1297073

[19] Michael J. McGuffin and Christopher P. Fuhrman. 2020. Categories
and Completeness of Visual Programming and Direct Manipulation.
In Proceedings of the 2020 International Conference on Advanced Visual
Interfaces (AVI ’20). Association for Computing Machinery, New York,
NY, USA, 1–8. https://doi.org/10.1145/3399715.3399821

[20] D. Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering. IEEE
Transactions on Software Engineering 35, 6 (Nov. 2009), 756–779. https:
//doi.org/10.1109/TSE.2009.67

[21] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2018.
Live Functional Programming with Typed Holes. https://doi.org/10.
48550/arXiv.1805.00155 arXiv:1805.00155 [cs]

[22] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and
Matthew A. Hammer. 2017. Hazelnut: A Bidirectionally Typed Struc-
ture Editor Calculus. In Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages (POPL ’17). Associa-
tion for Computing Machinery, New York, NY, USA, 86–99. https:
//doi.org/10.1145/3009837.3009900

[23] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT
Press, Cambridge, Mass.

[24] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert
Hirschfeld. 2019. Babylonian-Style Programming. The Art, Science,
and Engineering of Programming 3, 3 (Feb. 2019), 9:1–9:39. https:
//doi.org/10.22152/programming-journal.org/2019/3/9

[25] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (Nov. 2009), 60–67.
https://doi.org/10.1145/1592761.1592779

[26] Juha Sorva. 2012. Visual Program Simulation in Introductory Program-
ming Education. Ph. D. Dissertation. Aalto University, Espoo, Finland.

[27] William Robert Sutherland. 1966. The On-Line Graphical Specification
of Computer Procedures. Thesis. Massachusetts Institute of Technology.

[28] Steven L. Tanimoto. 2013. A Perspective on the Evolution of Live
Programming. In Proceedings of the 1st International Workshop on Live
Programming (LIVE ’13). IEEE Press, San Francisco, California, 31–34.

[29] Anthony Trory, Kate Howland, Judith Good, and Benedict Du Boulay.
2024. Physical vs. Virtual Representations Within Concreteness Fad-
ing for Primary School Computing. In 2024 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE Press, Liver-
pool, United Kingdom, 71–80. https://doi.org/10.1109/VL/HCC60511.
2024.00018

43

https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/3533015
https://doi.org/10.1145/2491956.2462170
https://doi.org/10.1111/j.2044-8279.1992.tb01017.x
https://doi.org/10.1111/j.2044-8279.1992.tb01017.x
https://doi.org/10.1145/3723010.3723029
https://doi.org/10.1145/3563767.3568131
https://doi.org/10.1145/3563767.3568131
https://doi.org/10.1145/3689493.3689987
https://doi.org/10.1145/3622780.3623644
https://doi.org/10.1145/3622780.3623644
https://doi.org/10.22152/programming-journal.org/2025/10/14
https://doi.org/10.22152/programming-journal.org/2025/10/14
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1007/BFb0033856
https://doi.org/10.1080/00131911.2018.1424116
https://doi.org/10.1080/00131911.2018.1424116
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1145/1013208.1013209
https://doi.org/10.1145/3623504.3623568
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1297105.1297073
https://doi.org/10.1145/1297105.1297073
https://doi.org/10.1145/3399715.3399821
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.48550/arXiv.1805.00155
https://doi.org/10.48550/arXiv.1805.00155
https://arxiv.org/abs/1805.00155
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1109/VL/HCC60511.2024.00018
https://doi.org/10.1109/VL/HCC60511.2024.00018

	Abstract
	1 Introduction
	2 Related Work
	3 Background: The Visual Language
	3.1 Code Cards vs. Documentation Cards
	3.2 Classroom Use
	3.3 From Physical to Virtual

	4 Design Space for an Environment
	5 Design
	5.1 Node Management
	5.2 Abstraction
	5.3 Well-Formedness Checking or Enforcement
	5.4 Syntax Checking or Enforcement
	5.5 Name Analysis or Enforcement
	5.6 Type Checking or Enforcement
	5.7 Literal Checking or Enforcement
	5.8 Program Evaluation
	5.9 Annotations

	6 Evaluation
	6.1 Abstraction Gradient
	6.2 Closeness of Mapping
	6.3 Consistency
	6.4 Diffuseness
	6.5 Error-Proneness
	6.6 Hard Mental Operations
	6.7 Hidden Dependencies
	6.8 Premature Commitment
	6.9 Progressive Evaluation
	6.10 Role-Expressiveness
	6.11 Secondary Notation
	6.12 Viscosity
	6.13 Visibility

	7 Limitations and Future Work
	8 Conclusions
	Acknowledgments
	References

